Derivation of the OLS estimator
Setup
Rewrite
\[Y_i = \beta_0 + \beta_1 X_i + U_i\]
as
\[U_i = Y_i - \beta_0 - \beta_1 X_i\]
and pick \(\beta_0\), \(\beta_1\) as to minimize the sum of squares of the \(U_i\)
Minimisation problem
\[\begin{split}
\begin{align}
(\hat{\beta}_0, \hat{\beta}_1) & = \text{arg}\min_{b_0,b_1} \: \sum_{i=1}^{n} U_i^2 \\
&= \text{arg}\min_{b_0,b_1} \: \sum_{i=1}^{n}\left(Y_{i}-b_0-b_1 X_{i}\right)^{2}
\end{align}
\end{split}\]
First order conditions
Differentiate the objective function with respect to \(b_0\) and \(b_1\):
\[\begin{split}
\begin{align}
\frac{\partial \sum_{i=1}^{n}\left(Y_{i}-b_0-b_1 X_{i}\right)^{2}}{\partial b_0} & = \sum_{i=1}^{n} 2 \cdot \left(Y_{i}-b_0-b_1 X_{i}\right) \cdot (-1)\\
\frac{\partial \sum_{i=1}^{n}\left(Y_{i}-b_0-b_1 X_{i}\right)^{2}}{\partial b_1} & = \sum_{i=1}^{n} 2 \cdot \left(Y_{i}-b_0-b_1 X_{i}\right) \cdot (-X_i)
\end{align}
\end{split}\]
The OLS estimator \((\hat{\beta}_0, \hat{\beta}_1)\) is the pair of values solving the
system of equation that results when setting the derivatives to zero:
\[\begin{split}
\begin{align}
\sum_{i=1}^{n} -2 \cdot \left(Y_{i}-\hat{\beta}_0-\hat{\beta}_1 X_{i}\right) & \overset{!}{=} 0 \\
\sum_{i=1}^{n} -2 \cdot \left(Y_{i}-\hat{\beta}_0-\hat{\beta}_1 X_{i}\right) X_i &\overset{!}{=} 0
\end{align}
\end{split}\]
Steps for \(\hat{\beta}_0\)
Start from first order condition for \(\hat{\beta}_0\)
\[
\sum_{i=1}^{n} -2 \cdot \left(Y_{i}-\hat{\beta}_0-\hat{\beta}_1 X_{i}\right) = 0
\]
divide by \(-2\)
\[
\sum_{i=1}^{n} Y_{i}-\hat{\beta}_0-\hat{\beta}_1 X_{i} = 0
\]
use \(\sum_i (a_i + b_i) = \sum_i a_i + \sum_i b_i\)
\[
\sum_{i=1}^{n} Y_{i} - \sum_{i=1}^{n}\hat{\beta}_0 - \sum_{i=1}^{n} \hat{\beta}_1 X_{i} = 0
\]
use \(a (b + c) = ab + ac\)
\[
\sum_{i=1}^{n} Y_{i} - \hat{\beta}_0 \sum_{i=1}^{n} 1 - \hat{\beta}_1 \sum_{i=1}^{n} X_{i} = 0
\]
definition of product
\[
\sum_{i=1}^{n} Y_{i} - \hat{\beta}_0 n - \hat{\beta}_1 \sum_{i=1}^{n} X_{i} = 0
\]
divide by \(n\)
\[
\frac{1}{n}\sum_{i=1}^{n} Y_{i} - \hat{\beta}_0 - \hat{\beta}_1 \frac{1}{n} \sum_{i=1}^{n} X_{i} = 0
\]
add \(\hat{\beta}_0\) on both sides
\[
\hat{\beta}_0 = \frac{1}{n}\sum_{i=1}^{n} Y_{i} - \hat{\beta}_1 \frac{1}{n} \sum_{i=1}^{n} X_{i}
\]
definition of \(\bar{Y}, \bar{X}\)
\[
\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}
\]
This gives us the formula for \(\hat{\beta}_0\). This is only useful in conjuction with
the formula for \(\hat{\beta}_1\), though.
Steps for \(\hat{\beta}_1\)
Start from first order condition for \(\hat{\beta}_1\)
\[
\sum_{i=1}^{n} -2 \cdot \left(Y_{i}-\hat{\beta}_0-\hat{\beta}_1 X_{i}\right) X_i = 0
\]
divide by \(-2\)
\[
\sum_{i=1}^{n} \cdot \left(Y_{i}-\hat{\beta}_0-\hat{\beta}_1 X_{i}\right) X_i = 0
\]
multiply out
\[
\sum_{i=1}^{n} X_{i} Y_{i} - \hat{\beta}_0 X_{i} - \hat{\beta}_1 X_{i}^{2} = 0
\]
use \(\sum_i (a_i + b_i) = \sum_i a_i + \sum_i b_i\)
\[
\sum_{i=1}^{n} X_{i} Y_{i} - \hat{\beta}_0 \sum_{i=1}^{n} X_{i} - \hat{\beta}_1 \sum_{i=1}^{n} X_{i}^{2} = 0
\]
plug in the formula derived above \(\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}\)
\[
\sum_{i=1}^{n} X_{i} Y_{i} - \left(\bar{Y} - \hat{\beta}_1 \bar{X}\right) \sum_{i=1}^{n} X_{i} - \hat{\beta}_1 \sum_{i=1}^{n} X_{i}^{2} = 0
\]
multiply out and use use \(ab + ac = a (b + c)\)
\[
\sum_{i=1}^{n} X_{i} Y_{i} - \bar{Y}\sum_{i=1}^{n} X_{i} - \hat{\beta}_1 \left( \sum_{i=1}^{n} X_{i}^{2} - \bar{X}\sum_{i=1}^{n} X_{i}\right) = 0
\]
Use property derived below (twice)
\[
\sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)\cdot\left(Y_{i} - \bar{Y}\right) - \hat{\beta}_1 \cdot \sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^2 = 0
\]
Divide by \(n - 1\), add term starting with \(\hat{\beta}_1\) to both sides
\[
\hat{\beta}_1 \cdot \frac{1}{n-1}\sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^2 = \frac{1}{n-1}\sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)\cdot\left(Y_{i} - \bar{Y}\right)
\]
Divide by \(n - 1\), add term starting with \(\hat{\beta}_1\) to both sides
\[
\hat{\beta}_1 \cdot s_{X}^2 = s_{XY}
\]
Divide by \(s_{X}^2\)
\[
\hat{\beta}_1 = \frac{s_{XY}}{s_{X}^2}
\]
Sums of products and products of sums / means
\[
\sum_{i=1}^{n} X_{i} Y_{i} - \bar{Y}\sum_{i=1}^{n} X_{i}
\]
use \(a (b + c) = ab + ac\)
\[
= \sum_{i=1}^{n} X_{i} Y_{i} - \sum_{i=1}^{n} X_{i}\bar{Y}
\]
add and subtract \(\sum_{i=1}^{n} \bar{X} Y_{i}\)
\[
= \sum_{i=1}^{n} X_{i} Y_{i} - \sum_{i=1}^{n} X_{i}\bar{Y} - \sum_{i=1}^{n} \bar{X} Y_{i} + \sum_{i=1}^{n} \bar{X} Y_{i}
\]
use \(1 = n / n\)
\[
= \sum_{i=1}^{n} X_{i} Y_{i} - \sum_{i=1}^{n} X_{i}\bar{Y} - \sum_{i=1}^{n} \bar{X} Y_{i} + \bar{X} \cdot n \cdot \frac{1}{n}\sum_{i=1}^{n} Y_{i}
\]
definition of \(\bar{Y}\)
\[
= \sum_{i=1}^{n} X_{i} Y_{i} - \sum_{i=1}^{n} X_{i}\bar{Y} - \sum_{i=1}^{n} \bar{X} Y_{i} + n \bar{X} \bar{Y}
\]
definition of product
\[
= \sum_{i=1}^{n} X_{i} Y_{i} - \sum_{i=1}^{n} X_{i}\bar{Y} - \sum_{i=1}^{n} \bar{X} Y_{i} + \sum_{i=1}^{n} \bar{X} \bar{Y}
\]
use \(\sum_i a_i + \sum_i b_i = \sum_i a_i + b_i\)
\[
= \sum_{i=1}^{n} X_{i} Y_{i} - X_{i}\bar{Y} - \bar{X} Y_{i} + \bar{X} \bar{Y}
\]
binomial formula
\[
= \sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)\cdot\left(Y_{i} - \bar{Y}\right)
\]