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1 Introduction and Motivation

Dynamic Programming is a recursive method for solving sequential decision
problems .
In economics it is used to find optimal decision rules in deterministic and
stochastic environments1, e.g. to identify subgame perfect equilibria of dy-
namic multiplayer games, and to find competitive equilibria in dynamic mar-
ket models2.
The term Dynamic Programming was first introduced by Richard Bellman,
who today is considered as the inventor of this method, because he was the
first to recognize the common structure underlying most sequential decision
problems . Today Dynamic Programming is used as a synonym for backward
induction or recursive3 decision making in economics.
Although Dynamic Programming is a more general concept it is most of
the time assumed that if there is an underlying stochastic process that the
process has the Markov property. This is only due to tractability of the
problem, especially if we move to infinite horizon problems. The crucial
limitation for Dynamic Programming is the exponential growth of the state
space, what is also called the curse of dimensionality.

2 Problem formulation

To emphasize the generality of the method of Dynamic Programming I start
by formulating a very general class of problems to which Dynamic Program-
ming as a solution method can be applied. The problem formulation allows
for both deterministic and stochastic sequential decision problems . First I
will only consider finite horizon problems and deterministic states. I will
also make explicit that this class of problems also contains the problem of
finding subgame perfect equilibria in extensive form games4.

1Following Rust(2006) I use for stochastic environments sometimes the phrase games
against nature. I will hopefully become clearer later, why this term is sometimes used in
economics.

2Although some reader might not yet be familiar with these terms it will become clear
later what these terms mean.

3The term recursive will show up throughout the discussion of this topic. Economists
usually capture by the term recursive that the state space is time invariant. In stochastic
problems people also sometimes assume at the same time that the underlying stochastic
process is Markovian.

4See appendix A for definition of an extensive form game.
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2.1 Finite horizon problems

The problem we want to solve is the following

max
ut

T∑

t=0

βtF (ut, xt) + βT H(uT , xT ) (1)

s.t. ut ∈ Γ(xt) ∀ t (2)
xt+1 ∈ L∀ t

xt+1 = ψ(ut, xt) (3)
x0 given

(4)

We assume that there is an underlying state space X and we assume that
ut ∈ U ⊂ Rm.
This problem formulation describes a family of boundary value problems,
because we want to solve the problem for the set {x0 ∈ X : ∃{ut}T

t=0 : ut ∈
Γ(xt)∀t}. Remember that for a recursive problem we assume that the state
space is time invariant. Furthermore the constraint correspondence (2) is
assumed to be time invariant too. The objective function in (1) is defined
on the graph of Γ5

F : gr(Γ) → R
The β in the objective function is a time invariant constant and it is assume
to be in the open set (0, 1). I will put all variables and functions in an
economic context below.
As long as we assume that T is finite we speak of the problem as a finite
horizon problem.

2.2 Infinite horizon problems

Now I want to discuss briefly the changes if we assume that T is infinite.
This case is then respectively called an infinite horizon problem.
The problem now reads as follows

maxut

∞∑
t=0

βtF (ut, xt) (5)

s.t. ut ∈ Γ(xt) ∀ t (6)
xt+1 ∈ L∀ t

xt+1 = ψ(ut, xt) (7)
x0 given

(8)
5This may yield some problems for the sufficiency of first order conditions also with

strict concavity of the objective function, but we will nevertheless stick to this assumption,
because it is mainly a differentiability issue, that we are not concerned with anyway in
the Dynamic Programming approach I discuss here.
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There are now some additional issues concerning the existence of a solution,
because somehow it seems to be reasonable to impose that a solution should
have a value of the objective function that is not infinity, because there are
some obvious problems, if there are several solutions that yield infinity as
value of the objective function. Furthermore it should be emphasized that
going from a finite horizon to an infinite horizon problem is much more
involved than it might seem at a first glance. The theory one is used to for
finite dimensional optimization has to be extended to infinite dimensional
spaces. But since these notes are not about the theory of optimization in
infinite dimensional spaces I do not want to go into details about this issue
here.

2.3 Optimal solutions

The optimal solution to the problems described in (4) and (8) is a sequence
{ut}T

t=0, where T might be infinity. There we already see that the object that
solves the infinite dimensional problem is element in an infinite dimensional
space, whereas the solution to the finite dimensional problem is an element
of RT×m. If we exploit the recursivity of the problem, we can formulate the
optimal control as a function of the states, i.e. we want to find an optimal
policy function g : X → U , such that it generates the optimal solution
{ut}T

t=0 for every x0 ∈ X.
Several things have to be discussed concerning this reformulation. First of
all this formulation defines what is called an optimal feedback or closed loop
control function in engineering, but as long as we consider non stochastic
environments, we could also consider what is called an open loop optimal
control function in engineering, i.e. we do not define the optimal control
function as a mapping from states to controls, but from time to controls
g̃(t) : Z+ → U . There are two reasons why I already want to use the
feedback control formulation: First it is the kind of representation common
in economics and second later on when there are stochastic environments
this is the kind solution we are going for anyway. Hence let me use it already
here. In deterministic environments there is a one-to-one mapping form time
to states along the optimal controlled path, therefore it is possible to choose
the optimal control just time depended, but this one-to-one relationship
breaks down as soon as we introduce uncertainty as I will do below. Put it
differently, in environments with no uncertainty the initial condition together
with the optimal control function allows to forecast any future states of the
system. This is no longer true if there enter stochastic shocks to the system
and affect the path of the state variables.
But finally it should be pointed out, that an open loop control would still
be possible if there is uncertainty, but since open loop schemes are a strict
subset of closed loop schemes one can achieve better solutions, if one allows
for the possibility of state dependent control schemes. Hence we want to
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search in the set of closed loop schemes, whenever this is possible.

2.4 Sequential Decision Problems in economic applications

After I have presented the problem formulation in great generality, I am now
going to give some meaning to the objects encountered in the two problem
formulations (4) and (8).
The constant β is called the (pure) discount factor. Sometimes the adjective
pure is added to distinguish it from the stochastic discount factor or pricing
kernel that is common in finance, and the intertemporal marginal rate of
substitution.
The objective function is what is called the utility function economics. The
function F : U × X → R is called period utility function, instantaneous
utility function, Bernoulli function or felicity function. I introduced the
function H : U × X → R in the finite horizon problem to emphasize the
special structure of extensive form games that have special payoffs in the
last period, but it might for example also capture things like utility from
bequests.
To remain in line with the standard economic notation I revise my notation
an I will denote the control variable by ct ∈ C and the felicity function by
u(ct, xt). Therefore the utility function becomes

U({ct, xt}T
t=0) =

T∑

t=0

βT u(ct, xt) (9)

Let me for the purpose of notational convenience assume that H(·) ≡ 0 and
let me treat the special case for finite games with no intermediate payoffs
differently if I consider these problems.
It should be furthermore noted that I allow explicitly for state dependency
in the felicity function. An assumption implicitly made is that I will only
consider time separable utility functions. It would be possible to consider
the broader class of recursive utility functions, but for this introduction I
will restrict the utility functions to be in the class of time separable util-
ity functions. There is a good discussion about different concepts of utility
specifications in Rust’s paper. But the bottom line to remember is that Dy-
namic Programming only works with the class of recursive utility functions,
where the time seperable utility specification is a special case of.
An other standard assumption I will make throughout is that the felicity
function is concave.
The constraint correspondence in (2) and (6) captures different constraints
in economic problems. It describes the feasible choice set for the agent, like
the budget set for an agent or the set of prices for a firm, but it also cap-
tures constraints like a debt constraint or non-negativity of consumption.
For games it describes the action set for the agent at the current node. We
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already encountered some simple problems that fit in this framework like the
neocalssical growth model, the consumption saving problem. But the formu-
lation allows also for problems, where the action sets are discrete. Generally
this formulation describes any kind of intertemporal decision problems.
After this little motivation of the problem we can finally start to solve the
problem at hand using Dynamic Programming , but not without introducing
uncertainty about future state first.

3 Uncertainty

The general formulation of the sequential decision problems allows for a
straightforward incorporation of uncertainty in the decision problem. I start
with formulating a general approach of introducing uncertainty to the model.
For this general introduction I do not impose any structure on the stochas-
tic process but for the discussion to follow I do restrict myself to stochastic
processes that are Markovian. Although it is a restriction on the underlying
process it is commonly used in economics mainly for tractability reasons,
especially in an infinite horizon setting. But let us start with a general for-
mulation for uncertainty entering the model.
The uncertainty in the model is a sequence of random variables6 {St}T

t=0 that
evolve according to a history dependent density functions φ(St|st−1, st−2, . . . , s1).
For notational convenience I will from now on denote a history of shocks up
to point t by st−1 := {st−1, st−2, . . . , s1} therefore I will denote the con-
ditional density function φ(St|st−1, st−2, . . . , s1) by φ(St|st−1). Since I did
not specify what the elements of the state vector xt are, I can incorporate
uncertainty by just assuming that the shock history st is part of the state
vector xt. But this means further that decisions in period t are taken after
uncertainty about the state in t has been resolved. Therefore the agent can
condition his action on the current state. This is the fact why we want to
look for optimal closedloop control schemes.
Furthermore one has to take a stand on what the objective function now is.
In almost all economic applications it is assumed that agents are expected
utility maximizers. As discussed in Rust (2006) Dynamic Programming de-
pends crucially on the linear structure of the conditional expected value
operator. Like with the different specifications for the utility functions the
important thing to remember is that Dynamic Programming only works if
the expected value is maximized in the objective function.
In this case the objective function (9) becomes

E
[
U({ct, xt}T

t=0)
∣∣x0] = E

[
T∑

t=0

βT u(ct, xt)|x0

]
(10)

6The notational convention that I will follow is that a random variable is denoted by
capital letters whereas a realization of the random variable is denoted by lower letters.
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where E[·|x0] denotes the expected value operator conditional on x0. To
avoid any measurability issues let me assume that the support of the ran-
dom variable St is finite and let me denote the probability of history st by
Π(st) and by Π(st+1|st) the conditional probability or transition probability
given history st. If I assume the process to be Markovian, the conditional
probability simplifies to Π(st+1|st).
The idea of the a game against nature comes from the fact that one can in-
terpret the stochastic process as a history of actions taken by nature, where
nature plays a mixed strategy over the action set. Therefore an agent’s op-
timal strategy can be interpreted as a best response to the strategy play by
nature.

4 Theory of Dynamic Programming

The key idea behind Dynamic Programming is the Principle of Optimality
formulated by Bellman (1957)

An optimal policy has the property that whatever the initial state
is, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

In other words an optimal path has the property that whatever the initial
conditions and the control variables over some preceding period are, the
control for the remaining period must be optimal for the remaining problem,
i.e. for every state the continuation value is maximized.
At this stage I want to point out two distinct characteristics of the Principle
of Optimality . First of all we see again that the problem is solved not only
for a unique initial state but for a whole family of initial states, because
the solution must be optimal for any state of the problem. Actually what
we will see later is that we neglect the initial condition altogether and solve
the problem, such that no matter what the initial state is the solution will
be optimal for every x ∈ X. This leads to the second point to mention
here, because it should be emphasized that Dynamic Programming solves
for optimal solutions for all states and not only for the optimal solutions in
the support of the controlled process.
It is of interest for economists to recognize that this is exactly the difference
between a Nash equilibrium and a subgame perfect equilibrium of a sequential
game. The Nash equilibrium only yields optimal behavior on the equilibrium
path, whereas in a subgame perfect equilibrium behavior is also optimal off
the equilibrium path. But it should be clear that the value of the objective
function is unaffect by the fact that the optimal solution is not optimal also
off the optimal path, because all other paths have measure zero. Hence the
optimal solution is characterized as follows
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An optimal decision has to be optimal only on the optimal path,
but not at node that have probability zero, i.e. that are off the
optimal path. Therefore there is a multiplicity of optimal solutions
if the solution is changed on the complement of the support of the
controlled process.

To conclude, one can say that Dynamic Programming solves actually a more
general problem, because in optimal control we require a solution only to be
optimal along the controlled process.

4.1 Backward induction

After this introduction I want to outline an algorithm to solve the problem
at hand, but first let me introduce an additional concept.
Let me define the value function v : X → R as

v(x0) = max
{ct}T

t=0

E
[
U({ct, xt}T

t=0)|x0

]
(11)

and denote the optimal policy function by

{c∗(xt)}T
t=0 = arg max{ct}T

t=0
E

[
U({ct, xt}T

t=0)|x0

]
(12)

The idea of backward induction is to solve the problem from the end and
working backwards towards the initial period. Let me consider a simple
problem of a game against nature, with a finite action set and finite support
of the stochastic process. This problem can easily be represented by an event
tree (See figure 1). It is a very simple example what is mainly due to the
fact that I did not want to draw an even bigger event tree. But nevertheless
let us apply backward induction to solve this little problem. To give it a
name, think of action I as ’Invest’ and D as ’Don’t invest’ and the shock
are the income realization. The numbers on the lines denote the conditional
probabilities of the shock occuring given the current history. The numbers
at the end of the tree and the two numbers above and below the first two
nodes are the values I want to assign for the evaluated felicity function at
these nodes7.
If we now work backward we start at the last decision state and begin by
determining the optimal behavior if the agent were at the top point. As one
can easily see, the optimal behavior there is D. If we go to the next node,
again the optimal behavior is D. If we do this for all nodes in the last period
we know the continuation value at these nodes, i.e. 4.0 at the top node, 2.0
at the next node below and so on... When we now move backwards through

7You may have already noticed that we have to assume a distinct initial value for the
problem, if we want to evaluate the felicity function and do not consider cases, where the
problem is independent of the initial value. Hence we solve for a distinct problem out of
the family of problems.
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the tree nature moves and therefore we have to determine the conditional
expected continuation value for an agent at the node before nature moves8.
The only choice left is the choice of the agent in the initial period. To de-
termine the optimal behavior there we consider current payoff indicated at
the first node plus the discounted continuation value from future choices.
Remember the Principle of Optimality that tells us that given any history
of shocks and choices future choices must constitute an optimal policy, i.e.
maximize the expected continuation value. Hence if we evaluate the value
function9 for x0 we see immediately that the optimal choice in the first pe-
riod is I.
Hence we have by simple comparison of expected continuation values found
the value function v(x0) for the initial state x0 and the optimal policy for
every state.
Now it can be easily seen what I tried to emphasize above, namely that the
optimal policy is not only optimal in the support of the optimally controlled
process, but also at the nodes that are never reached with positive proba-
bility like all the nodes in the lower branch of the event tree in our simple
example. This is due to the fact that when one starts solving the problem
from the last period, one does not know ex ante which path will turn out to
be optimal because I is the optimal choice in the first period and therefore
the problem has to be solved for optimal solutions at every possible state of
the process, i.e. also for optimal solutions in states that are never reached
once the optimal policy is conducted. We will see later for the infinite hori-
zon case, that this causes some problems for the numerical implementation
if one does not impose some additional restrictions on the problem. I will
discuss the numerical implementation of the backward induction in section
6.3.

4.2 Fixed point problem

As I already mentioned above, it is a substantial step going from finite to
infinite time horizon10.
Let us reconsider the problem in 8 and define the value function appropri-
ately

v(x0) = max
{ct}∞t=0

E [U({ct, xt}∞t=0)|x0] (13)

8Remember that we have assumed expected utility maximization of agents
9This is a slight abuse of terminology, but I will call the continuation value induced by

a certain policy value function as well although the policy function might not maximize
the expected continuation value.

10In the appendix I discuss briefly the case of a stochastic end point.
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We can rewrite the value function as follows

E [v(x0)|x0] = max
{ct}∞t=0

U({ct, xt}∞t=0)

= max
{ct}∞t=0

∞∑

t=0

βtE [u(ct, xt)|x0]

= max
{ct}∞t=0

u(c0, x0) +
∞∑

t=1

βtE [u(ct, xt)|x0]

= max
c0

u(c0, x0) + β max
{ct}∞t=1

∞∑

t=1

βt−1E [u(ct, xt)|x0]

= max
c0

u(c0, x0) + βE [v(x1)|x0]

(14)

It has to be proven that this problem yields the same solution as the one
in (4), but since it is not the subject of this talk I will not do it here11.
Just believe me for the moment that this can be done.12. We know that
this condition is true for every initial value and therefore it is due to the
Principle of Optimality true for every pair of consecutive periods and we
can replace x0 by x and x1 by x′ and do the same for the control variables,
then the definition of the value function becomes

v(x) = max
c

u(c, x) + βE
[
v(x′)|x]

(15)

This equation is also called the Bellman equation in economics and it is no
longer an algebraic equation, but it is a functional equation, because the
unknown is the value function v(x). To illustrate this13 one can replace the
max operator and define a new operator Ψ : V → V

v(x) = Ψ(v(x′))

This operator Ψ(·) that maps from the space of bounded functions in the
space of bounded functions can be shown to be a contraction mapping with
modulus β. This can be done using Blackwell’s sufficient conditions. From
the contraction mapping theorem, which is also called Banach’s fixed point
theorem, we know that a solution exists and that is is unique. Therefore the
approach to find a solution to the Bellman equation becomes a fixed point
problem and the algorithm to solve this problem can exploit the contraction
property of the Bellman equation. I want to mention also that all optimal
policy functions that solve this problem have a recursive structure.

11The interested reader can find the proof in Stokey/Lucas (1989)
12There are some additional issues if the value function is unbounded, but also these

can be resolved in most cases if we choose an appropriate norm. See also Rust (2006) for
further discussion and references.

13Let me assume for the further discussion that v(x) is a bounded function just to avoid
additional issues.
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5 Multiplayer games and Competetive Equilibrium

So far I only considered single agent optimization problems, where an agent
tries to find a feasible policy that maximizes his expected utility.
Things become a bit more involved, if there are several agents or as in com-
petetive equilibrium models a continuum of agents, because then the agents’
optimal decisions have not only be optimal for the different states of nature
but also for the actions taken by the other agents. Therefore we have to add
an outer loop to the problem to solve an additional fixed point problem.
The agent’s maximization problem becomes the inner loop of the composed
problem, but the state space has to be enlarged, because it also contains the
strategies of the other players and the distribution of their characteristics
like capital holdings or age. Sometimes it might be sufficient to include some
sufficient statistics about the distribution of the other agents in the state
space instead of the whole distribution.
The algorithm to solve the composed problem goes back and forth between
the two problems until it converges to a set of policies/strategies such that
the policies/strategies of agents are optimal given the other players poli-
cies/strategies, i.e. the strategies are mutual best responses, and the as-
sumed behavior of the other agents by agents solving their maximization
problem is the behavior that the other agents will choose in the end. This
is also called rational expectations in economics.
Furthermore we require that in a competetive equilibrium these optimal
strategies yield market clearing at given prices.
There is an additional issue arising in the multiple agent settings, because
there might be a multiplicity of equilibria. Although there are multiple op-
timal solutions to the single agent optimization problem as discussed above,
the problem in the multiple agent setting is that the agents might have dif-
ferent payoffs across different equilibria.
There are especially in game theory a variety of equilibrium refinements to
rule out some of the equilirbia, like the concept of Markov-perfect equilibria,
but I do not want to discuss them here.

6 Numerical Methods

After I have presented the theory underlying Dynamic Programming I am
now going to present some numerical implementations to solve the general
problem based on this theory. First I consider the finite horizon case that
we solved using backward induction and then I discuss several closely related
approaches to solve the infinite horizon problem.
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6.1 Function approximation methods

It is important to distinguish two concepts for function approximation. One
approach which I will call the local approach tries to approximate the func-
tion by a large number of function values over a fine grid and then approx-
imate the function by interpolation between these function values.
The other approach I will call the global approach14 tries to approximate the
function by a set of basis functions whose shape is governed by a finite set
of parameters.

6.2 Grid Choice

In many problems the state space X and the feasible set for the control Γ(X)
contain a continuum of elements.
Since the numerical routine can not handle infinite dimensional objects di-
rectly, some discretization is needed. Different methods have been proposed
of how to do this discretezation. From the above discussion it should be
noted that the state space might contain infinite dimensional objects like
the distribution functions or best response functions of other plyaers. These
objects have to be either discretized using the methods below or parame-
terized using the methods described later. I will call the set of discretized
values the grid.
The problem of grid choice is discussed here only briefly and not in the
extent it might require. The problem is closely related to the issue of nu-
merical integration, because the same problems arise there. Since I do not
have the time I will not cover this topic here and the interested reader is
referred some book on numerical methods like Judd (1998).
The outline of the methods I give here is very basic and by no means ex-
haustive.

6.2.1 Equally spaced grids

The first approach is to choose an equally spaced grid in each dimension
of the single state space and then form the Cartisian product of the state
grids. This approach has the problem, that the set of grid points grows
exponentially in the grid points of the single state directions and this is
called the Curse of Dimensionality and is maybe the major drawback of
Dynamic Programming .

6.2.2 Random grid

An alternaitve would be to choose not grids in each state direction but
do random sampling in the state space, i.e. we draw from some random

14I choose this term to distinguish it from the local approach, although it might be a bit
misleading, because we still approximate the function only on a subset of the domain.
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distribution the elements of the state space. Here the algorithm designer
can set the number of grid points. If this is done appropriately it can help
to get around the Curse of Dimensionality .

6.2.3 Adaptive grids

A third possibility I want to present briefly is the possibility of an adaptive
grid choice. The idea of this approach is to choose a coarse grid in the
beginnig and solve the problem once on for this coarse grid. After the
solution has been obtained there are successively grid points added at regions
in the state space, where the function seems to have a lot of curvature.

6.2.4 Interpolation

The function approximation by a finite number function values over a set of
grid points has the problem that the function is still unknown at most of the
points in its support. Therefore one needs methods to derive the function
value at points, which are not in the grid. This is done using interpolation
methods.
Since these nodes are on Dynamic Programming and are supposed to be
only an introduction I am not going to discuss interpolation methods here
and refer to Judd(1998).

6.3 Backward induction algorithm

Backward induction is an easy to implement algorithm. The only issue that
arises is in the case of continuous state and control variables. To implement
continuous variables on a computer, one has to choose some kind of dis-
cretization. The other issue is the Curse of Dimensionality . I will discuss
these problems in section 7.
Suppose we are able to appropriately take care of these two issues, then
the backward induction algorithm consists mainly of a grid search over the
feasible set of policies for each state.
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Outline of the algorithm:

1. Determine the value function for v(xT+1) for all xT+1 ∈ X.

2. Start for t = T for very x ∈ X evaluate for every ct ∈ Γ(xt) the
current utility from the choice, i.e. calculate

ṽ(xt−1, ct) = u(ct, xt) + βE [v(ψ(ct, xt))]

3. Choose for every xt

c∗t (xt) = arg maxct∈Γ(xt)u(ct, xt) + βE [v(ψ(ct, xt))]
and v(xt−1) = max

ct∈Γ(xt)
ṽ(xt−1, ct)

4. If t > 0 go to period t − 1 and go back to step 2 for the period
t− 1 instead of t = T , otherwise stop.

Performing these steps is exactly the procedure I described in the theory
section above15.

6.4 Value function iteration

As the backward induction algorithm the value function iteration is an easy
to implement but nevertheless powerful and reliable algorithm.

15If we solve for subgame perfect equilibria in extensive form games, there are usually
no intermediate payoffs and only a finite payoff, but nevertheless it should be clear that
the whole backward induction procedure has to be done to determine an optimal strategy.
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Outline of the algorithm:

1. Choose a convergence criterion ε for ‖vi(x)− vi−1(x)‖ < ε

2. Start with an initial guess for the value function v0(x), e.g. v0(x) =
0

3. For very x ∈ X evaluate for every c ∈ Γ(x) the current utility
from the choice if the value function vi(x) were the correct value
function, i.e. calculate

ṽ(xt−1, ct) = u(c, x) + βE [vi(ψ(c, x))]

4. Choose for every x

c∗(x) = arg maxc∈Γ(x)u(c, x) + βE [vi(ψ(c, x))]
and vi+1(x) = max

c∈Γ(x)
ṽ(xt−1, ct)

5. Check convergence. If the value function has not yet converged
go back to step 3 and use vi+1(x) as guess for the value function,
otherwise stop.

It relies on the contraction mapping property of the Bellman equation in
(15). Since the Bellman equation has an unique fixed point this algorithm
will converge to the true solution and uses the method of successive approx-
imations. Starting from v0(x) it can be shown that

lim
t→∞Ψt (v0(x)) = v(x)

Moreover it can be shown that

‖v(x)− vi(x)‖ ≤ 1
1− β

‖vi+1(x)− vi(x)‖

The inequality can also be used to pick the stopping criterion.
There is a nice intuition why this approach works, namely because we assume
that agents discount future utility, the effect of future periods on the value
function decreases with the distance of the future date from the current
date of the decision. Remember that we have β ∈ (0, 1) and therefore
limt→∞ βt = 0. There will be some date in the future where the effect on
the value function is almost neglectable. If one compares the value function
iteration to the backward induction algorithm one sees that essentially the
same is done, i.e. starting from some period and going back in time, but this
time the index is i and not t but otherwise the same procedure is conducted.
The only difference is that this time the algorithm does not stop in t = 0
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but iterates until the value function has converged. This can be thought of
as increasing the agent’s time horizon until it is almost infinity. Therefore
we have approximated the infinite time horizon by a finite time horizon that
is sufficiently large.

6.5 Howard’s improvement algorithm

The Howard’s improvement algorithm is also known as policy function it-
eration. It works similar to the value function iteration, but this time the
guess is for the optimal policy.
First notice that a policy function can also be represented by a transition
function. It is a mutation of the transition function of the stochastic process,
because next period’s states are a function of the current state and the con-
trol this period. If one changes the control this period, it just shifts the
probability distribution next period. So if we guess a policy c0(x), we can
represent it by a transition function Ω(c) and we get the following Bellman
equation

v(x) = u(c(x), x) + βΩ(c)v(x)

But this can be easily solved16 for v(x)

v(x) = (I − βΩ(c))−1 u(c(x), x)

and we get an implied value function v(x). With this trick at hand I can
now outline the algorithm.

16The inverse of (I − βΩ(c)) exists always because the matrix is diagonally dominant
and therefore the inverse exists.
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Outline of the algorithm:

1. Choose a convergence criterion ε for ‖ci(x)− ci−1(x)‖ < ε

2. Start with an initial guess for the policy function c0(x), that is
feasible. Derive the implied transition function Ω(c).

3. Perform the value function updating

v(x) = (I − βΩ(c))−1 u(c(x), x)

4. For very x ∈ X evaluate for every c ∈ Γ(x) the current utility
from the choice if the value function v(x) were the correct value
function, i.e. calculate

ṽ(xt−1, ct) = u(c, x) + βE [v(ψ(c, x))]

5. Choose for every x

ci+1(x) = arg maxc∈Γ(x)u(c, x) + βE [vi(ψ(c, x))]
and v(x) = max

c∈Γ(x)
ṽ(xt−1, ct)

6. Check convergence. If the policy function has not yet converged
go back to step 2 and use ci+1(x) as guess for the policy function,
otherwise stop.

The advantage of the policy function iteration algorithm is that it in general
converges faster. If it converges faster than the value function iteration
algorithm depends on the modulus of the contraction mapping. If it is close
to one the policy function iteration is much faster, but the time advantage
decreases with decreasing modulus and the value function iteration might
even become faster, because it does not require any matrix inversion.

6.6 Modified policy function iteration

An other method used in applied work, that has proven to yield a substantial
increase in convergence speed without requiring matix inversion, is what I
will call modified policy function iteration.
The algorithm works along the same lines as the value function iteration,
but instead of just one updating step as before it does several updating steps
once a new policy has been determined.
It does not like in the Howard’s improvement algorithm compute the inverse
and uses the updating formula to get a new policy, but it just applies the new
policy several times. Therefore we add an additional step to the algorithm
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6. Repeat N times the following updating procedure starting with j = 1

vj
i (x) = u(ci(x), x) + E

[
vj−1
i (ψ(ci(x), x))|x

]

if j = N stop and set vi+1(x) = vN
i (x).

The number of the updating steps N can be choosen arbirarily. From my
experience value for N between 15 and 30 depending on the problem, turned
out to yield the best time-speed trade-off.

6.7 Function approximation method

There is a well establish theory about function approximation. These meth-
ods are also called collocation methods or projection methods.
Common to all methods is that they try to approximate the unknown func-
tion by some basis functions17. The shape of the approximating function is
determined by a set of parameters. The parameters are chosen such that a
certain approximation criterion is met. Approximation criteria are usually
that functions go exactly through some points, this is only possible in a
system where there are as least as much degrees of freedom as points to be
matched.
The other possibility is to minimize some squared distance like in a regres-
sion procedure. This is usually done in over determined systems, i.e. when
there are less degrees of freedom than points to be matched.
The approximation methods are usually distinguish by the set of basis func-
tions they use, e.g. Taylor, Chebychev, Hermite.
These methods use far less points to approximate the function than do the
local approximation methods. Therefore there is also a well established the-
ory about how to choose the collocation nodes, i.e. the points at which the
function is evaluated.
But since these nodes are about Dynamic Programming I will not go into
the details of these methods and refer to Judd(1998) for further reference.

6.8 Value function iteration collocation

The main difference of the value function iteration collocation method is
that this time the optimal value function is not approximated using fine
grids of the states space, but using the collocation methods that I just very
briefly discussed.

17Sometimes also some additional criteria like derivatives should be matched. The
approach were also derivatives are matched is called splines.
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Outline of the algorithm:

1. Choose the set of basis functions to approximate the value func-
tion. Determine the set of parameters θ.

2. Choose a convergence criterion ε for ‖θi − θi−1‖ < ε

3. Start with an initial guess for the parameters of the value function
θ0 that imply a certain shape of vθ0(x)

4. At the collocation points x ∈ X evaluate for every c ∈ Γ(x) the
current utility from the choice if the value function vθi(x) were the
correct value function, i.e. calculate

ṽ(xt−1, ct) = u(c, x) + βE [vθi(ψ(c, x))]

5. Choose for all nods x

v(x) = max
c∈Γ(x)

ṽ(xt−1, ct)

and calculate the new values for θi+1

6. Check convergence. If the parameters have not yet converged go
back to step 4 and use θi+1 as parameters for the value function,
otherwise stop.

7 Curse of dimensionality

A crucial limitation to Dynamic Programming is the exponential growth of
the number of histories. If there are no restrictions on the form of the policy
function, then the agent in principle would need an optimal policy for every
history.
In the case when there are S possible states each period and suppose that
there are C elements in the choice, then the number of histories is of order
(ND)t.
The other problem is if there are many state variables and every combina-
tion of the single states variables must be considered, then the number of
overall states also grow exponentially. This problem also arises, if we impose
recursivity on the policy function. This problem was already discovered by
Bellman and Dreyfus and they referred to it as the curse of dimensionality.

8 Conclusions and further reading

These notes hopefully showed that Dynamic Programming is a reliable and
powerful method to solve sequential decision problems . The advantage is
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that it has a well established theory.
Especially the easy incorporation of uncertainty make it a widely used ap-
proach in economics. Dynamic Programming can be applied in a large va-
riety of economic problems, e.g. general equilibrium theory, industrial orga-
nization, game theory or mechanism design.
Although I emphasized the numerical application in these notes, Dynamic
Programming is also of theoretical interest for economic research.
Numerically Dynamic Programming is an easy and straightforward to im-
plement method, that yields accurate results and is insensible to numerical
inaccuracy.
Finally I should mention that these notes are only a short introduction to
Dynamic Programming and are by far not an exhaustive introduction to all
issues of Dynamic Programming . People how want to apply the methods
should also be familiar with the related fields of numerical work like function
approximation or integration.
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A Extensive form games

An extensive form game Ψ(I, T , {Si}i∈I , {Ξi}i∈I , {ui(·)}i∈I , φ(S)) is a
collection of players indexed by i ∈ I, a time structure for players’ actions
T , strategy sets Si, information sets Ξi and a payoff function for each player
that maps histories of actions into payoffs ui : ×i∈I ×t∈T Si → R.

These games are commonly described by a game tree.

B Markov Chain

Let us assume that Xt is a random variable with finite support. Let us denote
the probability of Xt = xt given the history xt−1 = {xt−1, xt−2, . . . , x0}
as Π(xt|xt−1). The stochastic process is a Markov chain if Π(xt|xt−1) =
Π(xt|xt−1), i.e. the probability of xt only depends on the realization of the
last period xt−1.

C Undertermined end time

These problems can numerically be treated like finite horizon problems. The
only restriction one has to impose is that there is a T such that survival prob-
ability is zero. But this assumption does not seem to be too unreasonable.
The only difference is that we now have an additional survival probability
entering the problem, since it is uncertain, if the agent will survive and be
still alive in the next period. The way to adjust for that is that we multiply
the transition probabilities by a survival probability. Therefore let me define
the discounted transition probability by

Π̃(st+1|st) := ρt+1Π(st+1|st)

where Π(st+1|st) denotes the conditional probability of going from state st to
state st+1 and ρt+1 denotes the survival probability from period t to t+1. We
can now solve the problem as before, but use the transition probabilities ˜Π(·)
instead of Π(·). But keep in mind that the discounted transition probability
will not sum to 1 anymore but to ρ.
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