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Abstract

The paper studies the canonical hold-up problem with one-sided investment by the buyer

and full bargaining power by the seller. The buyer can covertly choose any distribution of valu-

ations at a cost and privately observes her valuation. I show that unlike in the well-understood

case with linear costs, if investment costs are strictly convex, the buyer’s equilibrium utility is

strictly positive and total welfare is strictly higher than when valuations are public informa-

tion, thus alleviating the severity of the hold-up problem. In fact, when costs are mean-based

or display decreasing risk, the equilibrium outcome might be efficient.
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1 Introduction

The hold-up problem arises in a situation where one party (the buyer) can sink a relation-specific,

non-contractible investment that increases the surplus she can realize jointly with another party

(the seller) before bargaining over the division of the surplus takes place. To fix ideas, consider

the classical application of a vertical relationship where a manufacturer who operates in a product

market relies on a critical production input supplied by a monopolistic seller. Investments by the

manufacturer that increase her profit on the product market, such as investments in product or

process innovations to improve product quality, therefore increase her valuation for the supplier’s

input. The hold-up problem leads to inefficiently low investment if the seller can extract some

of the gains from trade ex post, because a rational buyer then anticipates that she cannot fully

appropriate the additional surplus generated by her investment.

In this article, I shed new light on the hold-up problem by allowing the buyer’s investment to

be flexible, that is, the buyer can, at a cost, choose any probability distribution over her valuation

for the seller’s good. My main results relate the severity of the hold-up problem to the shape of

the cost of investment. I argue that the hold-up problem becomes less severe with the degree

of cost convexity. Interestingly, I identify natural cost environments where the hold-up problem

is completely eliminated in the sense that it causes no inefficiency. In particular, this is the case

when costs are sufficiently convex and depend only on the mean of the distribution or decrease

in its riskiness.

I consider the hold-up problem when the seller has full bargaining power ex post, and the

buyer’s choice of an investment distribution is covert and unobservable for the seller.1 While

these assumptions stack the deck in favour of the hold-up problem to be severe, I focus on the

case that the buyer’s realized valuation remains her private information. As is well known, if,

in contrast, the buyer’s valuation is observable by the seller, the seller will extract all gains from

trade, and in anticipation of this, the buyer will not invest at all. Thus, what potentially creates

investment incentives in my setting with privately observed valuations is the buyer’s prospect to

obtain information rents ex post.

Throughout, I impose two assumptions on the cost function. First, costs are monotone in

the sense that if one distribution first order stochastically dominates (FOSD) another, then it is

more costly, a natural assumption in the investment context here. Second, costs are convex. This

intuitively captures increasing marginal costs of investment. Consider a distribution of valua-

tions which is a weighted average of a “high-valuation” and a “low-valuation” distribution, that

is, the former dominates the latter in terms of FOSD. Convexity then implies that marginally in-

1As explained in more detail below, this is the key conceptual difference between my paper and Condorelli and

Szentes (2020) where the buyer can commit to a distribution. The buyer’s lack of commitment may be viewed as a

limitation of the parties’ contractual possibilities.
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creasing the weight on the high-valuation distribution gets more costly the higher the weight. In

the context of investments in product quality through R&D, this, for example, reflects that it is

increasingly difficult to push the research frontier, due, for example, to the scarcity of new ideas.2

A special case is that costs are linear which arises when the buyer’s choice of distribution

corresponds to choosing a mixed strategy over deterministic valuations. For linear costs, Gul

(2001) shows that even if the buyer’s valuation is her private information, the hold-up problem

remains maximally severe in the sense that the same welfare outcomes obtain as in the case when

the buyer’s valuation is observable, that is, the buyer’s equilibrium utility is zero, and total welfare

is equal to the zero investment gains from trade.3 My first main result shows that, in contrast,

when costs are strictly convex, then the buyer’s equilibrium utility is strictly positive and total

welfare exceeds the zero investment gains from trade. Thus, the hold-up problem becomes less

severe with convex costs. Moreover, I show that both the buyer’s utility and total welfare might

increase as investment costs increase.4

My second set of results connects the severity of the hold-up problem to the “risk properties”

of the cost function. Costs are said to be decreasing (resp. increasing) in risk when costs are de-

creasing (resp. increasing) as the distribution gets more risky in the sense of a mean preserving

spread. I show that when costs are decreasing in risk (or depend only on the mean of the distribu-

tion), then the first-best outcome occurs in equilibrium if investment costs are sufficiently convex.

Thus, even though the seller has full bargaining power ex post, the hold-up problem causes no in-

efficiency. In contrast, when costs display increasing risk, then there is always socially inefficient

under-investment (unless costs are so high that zero investment is efficient).

The risk properties of the cost function capture, in a stylized way, salient features of the ap-

plication in question. For example, in the context of a manufacturer’s investments in quality

improvements, the risk properties of the cost function intuitively capture whether it is more or

less costly to generate a large quality improvement with a relatively small probability, or an, on

average equal, intermediate improvement more reliably. In this sense, costs that are increasing

in risk are likely to apply to manufacturers operating in mature product markets where process

innovations that yield predictable quality improvements are less costly than product innovations

characterized by rare, radical quality jumps. Reversely, costs that are decreasing in risk might

more adequately apply to young product markets with high innovation rates. In this sense, my

2While it is intuitive to connect convexity to a notion of decreasing returns to scale in production, in this paper, I

simply take a reduced form approach and impose assumptions on the cost function directly. Hébert (2018) provides

a microfoundation for a number of convex cost functions within the class of divergences that emerge as the result of

a dynamic effort provision process.
3I replicate this result in a slightly more general form.
4My analysis does not explicitly cover concave investment costs, in part for the technical reason that this leads to

optimizing convex functions over convex domains. Based on the example in Section 2, I conjecture though that the

case with concave costs resembles the linear case qualitatively.
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results suggest that the hold-up problem might be more severe in mature as opposed to young

markets.

The basic reason behind my first result lies in the nature of the buyer’s commitment problem

when choosing a distribution. As highlighted by Condorelli and Szentes (2020), the buyer would

like to commit to a distribution so as to induce the seller to choose a low price. However, since the

buyer’s investment is covert in my setting, she cannot commit. Thus, if the seller were to choose

the low price from the commitment outcome, incentives would arise for the buyer to secretely

deviate to a different distribution. The strength of the deviation incentives is the difference be-

tween marginal benefits and marginal costs. The marginal benefits from a deviation are constant,

because the benefit of choosing a distribution is simply the buyer’s share of the expected ex post

trading surplus which is linear in the distribution.

Now, if investment costs are linear, marginal costs are constant, too. Thus, the buyer’s net

deviation incentives are constant, that is, the same for any distribution. In fact, if the seller

were to choose the low price from the commitment outcome, the buyer would want to deviate

to the “highest possible” distribution, and in this sense, the buyer’s commitment problem is most

pronounced when costs are linear.5 Because the buyer’s deviation incentives must be zero in

equilibrium, it follows that the buyer is indifferent between all distributions in equilibrium (much

like in a standard mixed strategy equilibrium). In particular, her equilibrium utility is then equal

to her utility from not investing which is (normalized to) zero.

If, on the other hand, costs are strictly convex, marginal costs are increasing, and thus larger

deviations become more costly. In other words, convexity of costs attenuates the buyer’s commit-

ment problem, and this force moves the equilibrium outcome closer to the commitment outcome,

thus increasing the buyer’s utility (and total welfare6). In particular, if the cost function is the

sum of a linear and a scaled strictly convex part, then the buyer’s utility (and thus total welfare)

increases if the convex part is scaled up from zero to positive. In this sense, the buyer’s utility

(and total welfare) increases with investment costs.

Section 2 illustrates this reasoning in a simple example where the buyer’s distribution can

take on two possible valuations. In the general setting, where the buyer’s possible valuations

form an interval, I assume that the cost function is smooth in that it admits a Gateaux derivative.

This offers a remarkably tractable framework which allows me to make the above marginal utility

reasoning precise in my setting with flexible investments. As a methodological point, I provide

an equilibrium characterization in terms of the Gateaux derivative of the cost function.7 As is

5This is the reason why, with linear costs, the commitment outcome of Condorelli and Szentes (2020) cannot be

sustained when the seller does not observe the buyer’s distribution, as in Gul (2001).
6As I show, in my setting the seller’s profit is always equal to the zero investment gains from trade. Thus, welfare

is simply the buyer’s utility up to a constant.
7Technically, I use a result in Georgiadis et al. (2024) which characterizes the optima of a concave functional that
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well known, the Gateaux derivative is a directional derivative that extends the notion of a partial

derivative, or gradient, to functions of functions. Accordingly, the Gateaux derivative of the cost

function captures the marginal cost change if the buyer moves marginally from one distribution

in the direction of another distribution.

For my second set of results which connect the risk properties of the cost function to the sever-

ity of the hold-up problem, I draw on insights of Cerreia-Vioglio et al. (2017) who characterize

the risk properties of the cost function in terms of the shape of its Gateaux derivative. I also scale

the cost function with a parameter that captures the magnitude of both costs and marginal costs.

I show that in all cases, whether costs depend only on the mean, or are decreasing or increasing

in risk, total welfare and the buyer’s equilibrium utility increase as the cost parameter increases

from zero to a critical value, consistent with the intuition that a more convex cost function (higher

marginal costs) alleviates the buyer’s commitment problem.

Moreover, if costs depend only on the mean or are decreasing in risk, and the cost parameter

is sufficiently large, the equilibrium outcome is efficient, that is, the hold-up problem disappears

completely.8 The intuition behind this result is easiest to see when costs are decreasing in risk.

Given a pricing strategy of the seller, costs being decreasing in risk implies that mean preserving

investment distributions that are more spread out are cheaper. As a result, the buyer puts all

probability mass only on the smallest and largest possible valuations. In turn, the seller’s best

response is to choose either a high price equal to the largest possible valuation, or a low price

equal to the lowest possible valuation. In fact, the seller best responds with the low price if the

buyer puts relatively little probability weight on the large valuation. This is indeed optimal for

the buyer if it is relatively costly to invest in large valuations, which in my parametrization occurs

if the cost parameter is sufficiently large. But note when the price is equal to the lowest possible

valuation, trade is always efficient ex post, and the buyer is the residual claimant of the efficient

surplus, leading her to choose the efficient investment distribution. In other words, if the cost

parameter is sufficiently large, equilibrium investment is efficient.

This reasoning does not apply when costs are increasing in risk. In this case, because given

that the buyer prefers a minimally risky distribution, her best response, if the seller were to set

the low price, would be to concentrate all mass on a single valuation. But this is inconsistent with

equilibrium because, anticipating that the buyer puts mass on a single valuation, the seller would

then fully hold up the buyer, and the buyer would rather not invest. Instead, equilibrium involves

a mixed pricing strategy by the seller. Therefore, equilibrium trade is inefficient ex post, and the

equilibrium outcome then differs from the first-best.

admits a Gateaux derivative.
8When costs depend only on the mean, there might be multiple equilibria. I focus on Pareto-optimal equilibria,

which are also buyer-optimal because in any equilibrium, the seller’s profit is equal to the zero investment gains from

trade.
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While my focus in this paper is on value generating investments, a hold-up problem also arises

when an initially uninformed buyer can invest in information acquisition. In an extension, I show

how my model can be adapted to include information acquisition. Interestingly, in my extension,

the comparative statics with respect to investment and information acquisition costs are opposed

to one another. While higher (marginal) investment costs attenuate the hold-up problem, higher

(marginal) information acquisition costs aggravate the hold-up problem. The intuition behind

this difference is that higher information acquisition costs diminish the buyer’s ability to extract

surplus in the form of information rents.

Related Literature

My paper is related to the abovementioned papers by Gul (2001) and Condorelli and Szentes

(2020). Like Gul (2001), I consider the hold-up problem with unobservable investments, but

allow for convex investment costs. Absent linear costs, the standard logic behind mixed strategy

equilibria that is employed in Gul (2001) does not apply, and I use methods based on Gateaux

differentiability of the cost function to derive equilibria.9 Non-linear costs are also considered in

Condorelli and Szentes (2020), who, in contrast to my paper, consider the case when the buyer

can commit to an investment distribution (or, equivalently, the seller can observe the distribution

but not the realized valuation). One insight of my analysis is that even if the buyer cannot commit,

the commitment outcome may obtain in equilibrium, namely in those cases where my equilibrium

outcome coincides with the first-best.10

From a technical point of view, I use a result in Georgiadis et al. (2024) which provides a first-

order condition that characterizes the maximum of a concave, Gateaux-differentiable functional.

Georgiadis et al. (2024) study the optimal design of a wage contract in a moral hazard problem

with flexible effort choice. By contrast, I apply their first-order condition not to a design problem

but to derive explicit equilibria of the hold-up game.11

My paper shares with Ravid et al. (2022) the feature that the seller does not observe the

distribution of the buyer’s valuation. The key difference is that in Ravid et al. (2022), the buyer’s

ex ante choice is to acquire information about, rather than invest in, her valuation. Ravid et al.

9Gul (2001) does not only consider the problem with one-shot ultimatum bargaining as I do here, but shows that

efficiency can be restored by an appropriate dynamic bargaining protocol.
10There is a literature which, in settings with linear or parametric investment costs, studies the effects of partial

observability of the buyer’s investment. Dilme (2019), in a setting where investment increases both parties’ valuation

and the informed party makes a take-it or leave-it offer ex post, shows that the non-investing party gets less than

when investment is observable. Hermalin and Katz (2009), allowing for stochastic returns to investment, show that

the buyer’s investment incentives can go up or down when the seller obtains a signal about the buyer’s valuation.

Lau (2008), in a framework with deterministic investment returns, shows that better information about the buyer’s

valuation benefits the seller but not the buyer.
11For other work that studies optimal contract design with flexible effort choice but specific cost functions, see

Diamond (1998), Hébert (2018), or Barron et al. (2020). Caroll (2015) allows for flexible effort choices to study

robust contract design.
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(2022) show that in the limit when information acquisition costs are small, the buyer is worse

off than when information is for free. In contrast, I obtain welfare results away from the limit

because the information acquisition constraint that the distribution be Bayesian consistent with

a prior is missing from my framework and allows for more explicit equilibrium characterizations.

In an extension, I show how my framework can be used to speak to information acquisition in the

case that the buyer’s true valuations can take on only two values.12

The paper is organized as follows. The next section presents an example with two possi-

ble buyer valuations. Section 3 presents the general model. Sections 4 and 5 contain the key

equilibrium and welfare results. Section 6 derives explicit results when costs are mean-based,

decreasing or increasing in risk, respectively. Section 7 discusses a connection to information

acquisition. Section 8 concludes. All formal proofs are in the appendix.

2 Example

This section presents a simple example to illustrate some of the key intuitions of the paper. There

is a buyer and a seller. The buyer can have two possible valuations v ∈ {v, v̄} for the seller’s

good where 0 < v < v̄. Ex ante, the buyer chooses a probability f ∈ [0, 1] with which the high

valuation v̄ occurs. Ex post, after the valuation is realized, the seller makes a take-it or leave-it

offer by choosing a price p. If the buyer rejects, both parties obtain zero payoff. If the buyer

accepts, her payoff is valuation minus price, and the seller’s payoff is the price.

Without loss, the seller chooses a price equal either to v or v̄. Allowing for mixed strategies,

let h ∈ [0, 1] be the probability with which he chooses the high price. The buyer’s cost of investing

f is C( f ) = ℓ f + 1/2 · κ f 2, where κ ≥ 0 and ℓ ∈ (0, v̄ − v). Hence, the buyer’s and the seller’s

utility from the combination ( f , h) are13

U( f , h) = f (1− h)(v̄ − v)− ℓ f −
1

2
κ f 2, Π( f , h) = h f v̄ + (1− h)v. (1)

If κ = 0, then costs are linear. This can be interpreted in the sense that the buyer has two

pure strategies: choose valuation v at cost 0, and choose valuation v̄ at cost ℓ. The linear costs

C( f ) = ℓ f therefore correspond to the cost of the mixed strategy where valuation v (resp. v̄) is

chosen with probability 1− f (resp. f ).

The first-best investment level f FB maximizes the total surplus (1− f )v + f v̄ − C( f ) and is

12For the case with buyer commitment and information acquisition, see Roesler and Szentes (2017).
13I assume that when indifferent, the buyer accepts.
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thus given by

f FB =min

§

v̄ − v − ℓ

κ
, 1

ª

. (2)

Next, I discuss equilibrium. I begin with the benchmark case that the buyer’s valuation v

becomes publicly observable before the seller sets the price. In this case, the seller will always

choose p = v. As a consequence, the buyer’s ex post surplus is zero, and she will therefore choose

zero investment f = 0. The seller’s profit is v, the buyer’s utility is 0, and total welfare is v.

Next, I consider the case with unobservable investment where the seller observes neither the

distribution f nor the valuation v.14 Consider first the seller’s best response to f : if f < v/v̄,

the seller optimally chooses the low price (h = 0). If f = v/v̄, the seller is indifferent between

the high and low price (h ∈ [0, 1]). And if f > v/v̄, the seller optimally chooses the high price

(h= 1).

Consider now the case with linear costs (κ = 0). In this case, the same welfare outcomes

obtain as in the case with observable valuation. To see this, note that there is no equilibrium

where the seller sets a deterministic price. The reason is that if the seller were to charge the low

price (h= 0), the buyer’s utility from investment f is f (v̄−v)−ℓ f . Thus, her marginal investment

benefit is v̄ − v, and her marginal investment cost is ℓ. Since ℓ < v̄ − v, the buyer’s best response

would be “full” investment f = 1. At that point, however, charging the low price would not be a

best response for the seller.

Likewise, if the seller were to charge the high price (h= 1), the buyer’s utility from investment

f is 0 − ℓ f and her best response would be “zero” investment f = 0. At that point, however,

charging the high price would not be a best response for the seller (recall that v > 0).

Therefore, there is only a mixed strategy equilibrium where the buyer chooses f = v/v̄ so as

to keep the seller indifferent between both prices, and the seller chooses h so as to keep the buyer

indifferent between zero investment ( f = 0) and full investment ( f = 1). The left panel of Figure

1 illustrates the best response functions and the equilibrium outcome.15

Because the buyer is indifferent, her equilibrium utility is zero (her utility from zero invest-

ment). As the seller is indifferent, her equilibrium profit is v (her profit from charging the price

v), and total equilibrium welfare is v. Therefore, payoffs are identical to the case with observ-

able investment: While there is now positive investment in equilibrium and the buyer obtains

an ex post information rent, her rent is fully dissipated by her ex ante investment expenditures.

14The case with observable investment and unobservable valuation corresponds to the setting in Condorelli and

Szentes (2020) where the buyer can commit to a distribution of valuations.
15More formally, given h, the buyer maximizes f (1 − h)(v̄ − v) − ℓ f . Thus, her best response is f = 0 if h >

(v̄ − v − ℓ)/(v̄ − v), and f = 1 if h < (v̄ − v − ℓ)/(v̄ − v), and she is indifferent otherwise. Since ℓ < v̄ − v, the only

intersection of the buyer’s and seller’s best responses is at f = v/v̄ and h = (v̄ − v − ℓ)/(v̄ − v).
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Moreover, the positive investment does not improve welfare because trade is not efficient ex post.

h

f

1

1

h∗v

v̄

f ∗

v̄−v−ℓ

v̄−v

f FB

κ= 0

h

f

1

1

v

v̄

v̄−v−ℓ

v̄−v

f FB

0< κ < κ̂

h

f

1

1

v

v̄

v̄−v−ℓ

v̄−v

f FB

κ≥ κ̂

Figure 1: The figure shows the best response functions of the buyer ( f ∗, blue, solid) and the seller

(h∗, red, dashed) and the first-best investment ( f FB, dotted). The buyer’s best response to h = 0

is equal to the first-best investment because if h= 0, the buyer is the residual claimant of the full

surplus. The left panel shows the case with linear cost (κ= 0). The center and right panels show

the cases with strictly convex cost (κ > 0) when the equilibrium outcome does (right) or does not

(center) coincide with the first-best.

Consider now what changes if κ is larger than zero so that investment costs are convex. If the

seller charges the low price (h= 0), the buyer’s marginal investment benefit is still v̄ − v but her

marginal costs ℓ + κ f are now increasing in investment f . Therefore, if κ is sufficiently large,

the buyer’s best response to the low price is below v/v̄ so that charging the low price remains

indeed optimal for the seller. More specifically, observe that if the seller charges the low price,

trade is efficient ex post, and the buyer is the residual claimant of the efficient surplus. Thus,

the buyer’s best response to the low price is always equal to the first-best investment. Therefore,

whenever f FB is below v/v̄, the first-best outcome f FB obtains in equilibrium, and the hold-

up problem causes no inefficiency. Formally, it follows from (2) that f FB ≤ v/v̄ if and only if

κ ≥ κ̂ = v̄/v · (v̄ − v − ℓ). Thus, the first-best outcome prevails if κ ≥ κ̂. This case is illustrated in

the right panel of Figure 1.16

What happens if κ ∈ (0, κ̂)? In this case, the first-best outcome does not obtain in equilibrium,

because marginal costs are too low for the buyer not to deviate to an investment larger than v/v̄

16Formally, the buyer now maximizes f (1 − h)(v̄ − v)− ℓ f − 1/2 · κ f 2. By a straightforward calculation, letting

h0 = (v̄ − v − ℓ− κ)/(v̄ − v) and h1 = (v̄ − v − ℓ)/(v̄ − v), her best response is

f ∗(h) =







1 i f h < h0
v̄−v−ℓ

κ −
v̄−v

κ h i f h ∈ [h0,h1]

0 i f h > h1

In particular, f ∗ is decreasing resulting in a unique equilibrium.
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if the seller were to choose the low price (h= 0). This is illustrated in the central panel of Figure

1. Similar to the case with linear cost, in equilibrium the buyer chooses f = v/v̄ so as to keep

the seller indifferent, and the seller chooses h so as to render the buyer’s choice of v/v̄ optimal,

that is, (1 − h)(v̄ − v) = C ′(v/v̄). In contrast to the case with linear cost, however, the buyer

now obtains strictly positive utility. The reason is that up to the equilibrium investment level f ,

her marginal costs are strictly lower than her marginal benefits due to convexity of the costs and

linearity of the benefits. Formally, the buyer’s equilibrium utility in the range κ ∈ (0, κ̂) calculates

to

UB = f (1− h)(v̄ − v)− C( f ) =
1

2
κ
� v

v̄

�2

. (3)

Notice that this is increasing in κ. The reason is that in the range κ ∈ (0, κ̂), the direct effect of

facing higher investment costs is outweighed by the indirect strategic effect that the seller reduces

the price (reduces h) as κ increases. Moreover, as the seller is indifferent between the low and

the high price, her profit is v, irrespective of κ. Thus, total welfare is UB + v.

Overall, three insights emerge from these observations:

(i) The buyer’s equilibrium utility and total welfare are non-monotone in costs. They increase

up to κ̂ and then decrease, as illustrated by Figure 2. The blue (solid) curve plots the buyer’s

utility as a function of κ.

(ii) Because the buyer’s utility is strictly positive for κ > 0, total welfare is strictly larger than

in the benchmark case when the buyer’s valuation is public information.

(iii) For values κ ≥ κ̂, the equilibrium outcome is efficient, and the hold-up problem disap-

pears, as illustrated by Figure 2. The red (dashed) curve plots first-best welfare. (Note that for

κ ≤ v̄ − v − ℓ, we have that f FB = 1. Thus, welfare is linear in κ in this range.)

κ
v

κ̂v̄ − v − ℓ

Figure 2: The figure shows total equilibrium welfare UB + v (blue) and first-best welfare (red,

dashed) as a function of κ for the values v = 1, v̄ = 2, ℓ= 1/2, κ̂ = 1.

I now turn to the general model where the buyer’s valuation can take any value in an interval.
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I will show that (i) and (ii) carry over to the general setting if investment costs are strictly con-

vex. Even though part (iii) might appear special to the setting with two valuations (as the seller

effectively only chooses among two prices), I show that it does carry over to the general setting

if the cost function is “mean-based” or displays “decreasing risk”.

3 Model

There is a seller who has a good, and there is a buyer who can invest in her valuation for the

good by choosing a cumulative distribution function (cdf) F over the set of possible valuations

V = [v, v̄], 0 ≤ v < v̄, at cost C(F). Let F denote the set of all cdf’s over V . The timing is as

follows: The seller chooses a price p, and the buyer simultaneously chooses a cdf F ∈ F . Then

the buyer privately observes her realized valuation v and decides to accept or reject to trade at

the price p. If she rejects, both parties get zero. If she accepts, the buyer’s payoff is v− p, and the

seller’s payoff is p.

The buyer’s strategy specifies a cdf F and a decision to accept or reject, contingent on p. A

(mixed) strategy for the seller is a cdf over prices. In a perfect Bayesian equilibrium (henceforth:

equilibrium), the buyer accepts any price p < v and rejects any price p > v, and her choice of cdf

is optimal given the seller’s pricing strategy, and the seller’s strategy is optimal given the buyer’s

choice of cdf and acceptance/rejection decision.

It is a standard argument that in any equilibrium, the buyer accepts with probability 1 when

indifferent (p = v) and that the seller never chooses a price strictly below the buyer’s smallest

possible valuation v. Moreover, it is weakly dominated for the seller to choose a price strictly

above the buyer’s largest possible valuation v̄. To analyze the initial stage of the game, I therefore

focus on seller strategies H that are cdf’s from the set F .

The buyer’s expected share of the trading surplus when valuation v has realized and before

having observed the price is

H(v) =

∫ v

v

(v − p) dH(p) =

∫ v

v

H(p) dp, (4)

where the second equality follows from integration by parts. The ex ante expected utilities for

the buyer and seller are given by17

U(F, H) =

∫

V

H(v) dF − C(F), Π(H, F) =

∫

V

(1− F(p−))p dH(p). (5)

17F(p−) denotes the left limit limq↑p F(q).
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With abuse of language, I refer to a combination (F, H) ∈ F 2 as an equilibrium when F and H

are mutual best responses given U and Π.

I next state the assumptions on the cost function that I impose throughout the paper.

A1 C :F → R is convex and continuous18.

A2 C is Gateaux differentiable, that is, for all F, F̃ ∈F , the “Gateaux differential” of F in the direction

of F̃ , given as the limit

δC(F ; F̃ − F) = lim
ε→0

1

ε
[C(F + ε(F̃ − F))− C(F)] (6)

exists. Moreover, there is a continuous “Gateaux derivative” cF : V → R so that

δC(F ; F̃ − F) =

∫

V

cF(v) d(F̃ − F). (7)

A3 cF(v) is strictly increasing in v for all F ∈ F .

Convexity means literally that the cost of the weighted average of two distributions is smaller

than the weighted average of the cost of each distribution. I explain the economic significance of

convexity below.

A2 captures that costs are smooth. Intuitively, the Gateaux differential δC(F ; F̃ − F) approx-

imates the cost change C(F̃) − C(F) if one moves from F in the direction of F̃ . Expression (7)

means that the Gateaux differential is linear (in F̃ − F) and thus amounts to a linear approxima-

tion of cost changes—analogous to a first-order Taylor approximation with cF corresponding to

the gradient of C at the point F .19,20

A3 implies that C is monotone in the sense that if one distribution dominates another in terms

of FOSD, then it is more costly. In fact, monotonicity of C is equivalent to cF being increasing

18More precisely, C is assumed to be continuous in the topology of weak convergence, that is, if Fn converges

weakly to F , then C(Fn) converges to C(F). Because the set of cdfs F is compact, continuity of C ensures existence

of various optimizers below.
19To see the analogy, suppose C : R → R is uni-dimensional. Then by multiplying and dividing the Gateaux-

differential with F̃ − F , it can be written as

δC(F ; F̃ − F) = lim
ε→0

1

ε(F̃ − F)
[C(F + ε(F̃ − F))− C(F)] · (F̃ − F) = C ′(F) · (F̃ − F),

and hence δC(F ; F̃ − F) ≈ C(F̃ )− C(F). It is well-known though that, in general, the Gateaux differential need not

be linear, but only homogeneous.
20It is well-known that the Gateaux derivative is unique only up to a constant. The reason is that F and F̃ in (7)

are both cdf’s. Thus adding a constant to cF does not affect the right hand side.
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for all F ∈ F (see Cerreia-Vioglio et al., 2017). While A3 is therefore slightly stronger than

monotonicity of C , it allows me to avoid some uninteresting case distinctions.21

Convexity together with monotonicity implies increasing marginal costs of investment in the

following sense. Consider the cost Φ(τ) = C(τF + (1 − τ)G) of the weighted average of the

distributions F and G where F FOSD G. Since C is monotone and convex, so is Φ.22 Thus, the

cost of a marginal increase of the weight τ increases with the weight. For example, in the context

of R&D investment, where τ may reflect the probability of a “breakthrough”, this captures that

it becomes increasingly difficult to increase the breakthrough probability, for example, because

new ideas become increasingly scarce.

A3 also implies that C is uniquely minimized by the distribution which places full mass on the

lowest valuation v. I shall refer to this distribution as Fmin and normalize its cost to zero, ensuring

that investment costs are non-negative:23

Fmin = 1[v,v̄], C(Fmin) = 0. (12)

Fmin can thus be interpreted as the default distribution that arises if the buyer does “not invest”.24

Finally, note that continuity of C implies that there is a well-defined first-best distribution that

maximizes the total surplus
∫

V
v dF − C(F). If unique, I denote the first-best distribution as F FB.

An important special case is the class of linear cost functions. C is linear if and only if C(F) =
∫

V
c(v) dF(v) for a continuous function c : V → R. In this case, the Gateaux derivative is cF = c

for all F . Linearity arises in a setting where the buyer can choose a valuation v ∈ V at cost c(v),

and V is the set of the buyer’s pure strategies (see, e.g., Gul, 2001). C(F) is then the cost of the

mixed strategy that randomizes over V according to F .

A useful benchmark for the analysis is the case in which the buyer’s valuation becomes public

information before the seller chooses the price. In equilibrium, the seller then chooses the price

equal to the valuation and extracts the entire trading surplus. Anticipating this, the buyer chooses

21A3 implies that C is strictly monotone in the sense that if F FOSD G and does not coincide with G almost

everywhere, then C(F) > C(G).
22To see convexity of Φ, let ζ ∈ (0,1), then

Φ(ζτ+ (1− ζ)τ′) = C(G + (ζτ+ (1− ζ)τ′)(F − G)) (8)

= C(ζ(G +τ(F − G)) + (1− ζ)(G +τ′(F − G))) (9)

≤ ζC(G +τ(F − G)) + (1− ζ)C(G +τ′(F − G)) (10)

= ζΦ(τ) + (1− ζ)Φ(τ′). (11)

23
1 denotes the indicator function.

24That Fmin minimizes C follows from monotonicity and since any distribution FOSD Fmin. Uniqueness follows

from the fact that cF is strictly increasing. I omit the details.
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the default distribution Fmin. The resulting utilities and welfare are

U PUB = 0, Π
PUB = v, W PUB =

∫

V

v dFmin = v. (13)

4 Equilibrium Analysis

My first proposition is the main equilibrium characterization of the paper.

Proposition 1 (i) There is an equilibrium.

(ii) (F, H) is an equilibrium if and only if there are λ and π≥ v such that

H(v)− cF (v)−λ ≤ 0 ∀v ∈ V, (14)

H(v)− cF (v)−λ = 0 ∀v ∈ supp(F), (15)

(1− F(p−))p−π ≤ 0 ∀p ∈ V, (16)

(1− F(p−))p−π = 0 ∀p ∈ supp(H). (17)

Part (i) follows from a standard fixed point argument along the same lines as in the existence

proof in Ravid et al. (2022, footnote 22). Part (ii), more precisely, the conditions (14) and (15)

which characterize the buyer’s best response in terms of the Gateaux derivative, are somewhat

non-standard. To shed light on part (ii), it is easiest to first consider the conditions (16) and (17).

These conditions represent the familiar conditions for a (mixed) pricing strategy by the seller

to be a best response to F : Any price in the support of the strategy must yield the same profit

π= (1− F(p−))p, and any price outside the support must not yield a higher profit.

The conditions (14) and (15) are analogous conditions for the buyer. In fact, consider the

special case of linear C , and recall the interpretation of C as the cost of a mixed strategy when

the buyer can choose a valuation v at cost c(v). In this case, the buyer’s utility from the pure

strategy v is H(v)− c(v), and the conditions (14) and (15) therefore represent the conditions for

a (mixed) strategy by the buyer to be a best response to H. The significance of part (ii) is that the

same formal conditions characterize the buyer’s best response even when the Gateaux derivative

cF is not constant in F .

Notice, however, that when cF is not constant in F , (14) and (15) describe F only implicitly,

because F appears on both sides. To see this more clearly, note that (14) and (15) imply that a

point in supp(F) is a maximizer of H(v) − cF (v). Therefore, F is a solution to (14) and (15) if

and only if its support satisfies

supp(F) ⊆ arg max
v∈V

H(v)− cF(v). (18)
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To establish (14) and (15), I can use Proposition 1 in Georgiadis et al. (2024) which shows

that F maximizes U(G, H) =
∫

V
H(v)dG − C(G) over G, and is thus a best response to H, if and

only if F is the solution to the first-order condition25

∫

V

H(v)− cF(v) dF ≥

∫

V

H(v)− cF (v) dG ∀G ∈ F . (19)

With λ =
∫

V
H(v)− cF (v) dF , this writes

∫

V

H(v)− cF (v)−λ dF = 0 and

∫

V

H(v)− cF (v)−λ dG ≤ 0 ∀G ∈ F . (20)

Because F and G are cdf’s, this is equivalent to (14) and (15).

Finally, it is noteworthy that Proposition 1 does not use the monotonicity assumption A3.

5 Welfare Analysis

This section contains the key welfare results for general cost functions. The main result shows how

the buyer’s equilibrium utility and total welfare depend on the convexity of the cost function. To

set the stage, I first show that in any equilibrium, the seller’s profit is equal to v and thus coincides

with his profit in the case when valuations are public.26

Proposition 2 The seller’s equilibrium profit is v.

The argument is by contradiction. If the seller’s profit was strictly larger than v, then since the

seller is indifferent between all prices in the support of the pricing distribution, the price v is not

in the support. Thus, the smallest price, say pℓ, in the pricing distribution is strictly larger than

v. This implies that pℓ cannot be in the support of the buyer’s valuation distribution, because the

buyer would benefit from redistributing probability mass from v = pℓ to v = v. This follows from

the buyer’s best response condition and the fact that cF is strictly increasing. But if v = pℓ is not

25A similar characterization of the optimum of a concave functional in terms of its Gateaux derivative appears in

Luenberger (1997, Lemma 1, p. 227).
26Proposition 2 does rely on A3. Without further assumptions on cF , equilibrium profits are not uniquely pinned

down because there can be multiple equilibria with different profits. This can be illustrated already in the linear

case. Suppose that v = 0, and that c is strictly positive on the interval (v, v̄) and c(v) = c(v̄) = 0. In this case, all

distributions that place mass only on v or v̄ are costless for the buyer. There are therefore multiple equilibria: the

buyer places probability f on v̄ and 1− f on v for some f ∈ [0,1], and the seller chooses p = v̄. The seller’s profit is

f v̄. This observation generalizes, and it can be shown that, in general, the seller’s profit is bounded by

min

�

arg min
v∈V

cF (v)

�

≤ Π ≤max

�

arg min
v∈V

cF (v)

�

. (21)
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in the support of the buyer’s distribution, it cannot be an optimal price for the seller, because a

slight price increase would make him better off.

Since the seller’s profit is v, total equilibrium welfare is W = UB + v and thus pinned down

by the buyer’s equilibrium utility. The next proposition, characterizes the buyer’s equilibrium

utility.27

Proposition 3 Let (F, H) be an equilibrium.

(i) The buyer’s equilibrium utility is

UB =

∫

V

cF (v) dF(v)− C(F)− cF (v). (22)

(ii) If C is linear, then UB = 0.

(iii) If C is strictly convex and C(F) 6= 0, then UB > 0.

The proof of part (i) shows that λ in part (ii) of Proposition 1 is equal to −cF(v). Once this is

established, the expression for UB is immediate from plugging (15) into (5). Part (ii) is immediate

from (22), the definition of linear costs, as well as the normalization C(Fmin) = 0 and the fact that

C(Fmin) =
∫

c(v)d1[v,v̄] = c(v) in the linear case. Note that part (ii) replicates the result in Gul

(2001) that when costs are linear, the welfare outcomes when the buyer’s valuation is her private

information coincide with those in the public information benchmark. The result here is slightly

more general because Gul (2001) only allows for convex c.

The argument behind part (iii), perhaps the key result of the paper, follows from familiar

marginal benefit versus marginal cost reasoning which carries over to my setting with flexible

investments, and it is instructive to elaborate on it. Imagine that, instead of choosing among

all cdf’s, the buyer chooses a uni-dimensional investment level τ ∈ [0, 1] by selecting a convex

combination

Fτ = τF + (1− τ)Fmin (23)

of the equilibrium distribution F and the default distribution Fmin. Given the seller’s equilibrium

distribution H, the buyer’s benefit from investing τ is

Ψ(τ) =

∫

V

H(v) dFτ = τ

∫

V

H(v) d(F − Fmin) +

∫

V

H(v) dFmin, (24)

27Proposition 3 also holds without A3. The only difference in (22), the term cF (v) has to be replaced by minv∈V cF (v)

(which is well-defined since cF is continuous by assumption).
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and her cost is Φ(τ) = C(Fτ).

Because the buyer’s equilibrium choice F (in the equilibrium where she chooses among all

cdf’s) is F1, her equilibrium utility is

UB = Ψ(1)−Φ(1). (25)

I now use a marginal benefit and cost argument to show that this expression is strictly pos-

itive. Indeed, because the investment benefit Ψ(τ) is linear in τ, marginal benefits Ψ ′(τ) =
∫

V
H(v) d(F − Fmin) are constant. On the other hand, note that

Fτ+ε = Fτ + ε(F − Fmin). (26)

Therefore, marginal costs at τ correspond exactly to the Gateaux differential at Fτ in the direction

F − Fmin. Formally:

Φ
′(τ) = lim

ε→0

1

ε
[C(Fτ + ε(F − Fmin))− C(Fτ)] = δC(Fτ, F − Fmin) =

∫

V

cFτ(v) d(F − Fmin). (27)

Now, the fact that F is a best response implies that at τ = 1, marginal benefits (weakly) exceed

marginal costs, because otherwise, the buyer could profitably deviate by marginally lowering τ.

Formally, the equilibrium conditions (14) and (15) imply that at τ= 1:

Ψ
′(1)−Φ′(1) =

∫

V

H(v)− cF(v) d(F − Fmin) (28)

=

∫

V

λ dF −

∫

V

H(v)− cF (v) dFmin (29)

= −

∫

V

H(v)− cF (v)−λ dFmin (30)

≥ 0. (31)

Crucially, because C is strictly convex, so is Φ,28 and thus Φ′ is strictly increasing. Therefore,

because marginal benefits are constant, marginal benefits strictly exceed marginal costs for all

τ < 1: ψ′(τ)> φ′(τ).

Finally, note that the buyer can guarantee herself a weakly positive utility by investing τ = 0

which corresponds to choosing the default distribution Fmin = F0.29

Therefore, because the buyer’s marginal utility is strictly positive up to τ = 1, her overall

28See footnote 22.
29In fact, this would result in utility Ψ(0)−Φ(0) =

∫

V
H(v) dFmin − C(Fmin) which is weakly positive because H is

positive and C(Fmin) = 0 by (12).
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utility is strictly positive. Formally:30

UB = Ψ(1)−Φ(1) =

∫ 1

0

Ψ
′(τ)−Φ′(τ) dτ+Ψ(0)−Φ(0) > 0. (32)

The next corollary uses the results obtained so far to derive welfare changes when a strictly

convex part is added to a linear cost function. Part (i) says that the buyer’s equilibrium utility

and total welfare may increase as costs increase. Part (ii) says that with strictly convex costs,

the welfare when valuations are private is strictly larger than in the benchmark case with public

valuations. In this sense, the hold-up problem is alleviated with unobservable investments.

Corollary 1 Consider a cost function that is a combination of a linear and a strictly convex cost

function, that is, C(F) =
∫

V
ℓ(v) dF + κΓ (F) where κ ≥ 0 and Γ is strictly convex and satisfies

A2-A3. Suppose there is κ̃ > 0 and an equilibrium (Fκ̃, Hκ̃) with C(Fκ̃) 6= 0. Then we have:

(i) The buyer’s equilibrium utility and total welfare is strictly larger at κ̃ than at κ = 0.

(ii) Total welfare when valuations are private information is strictly larger than when they are

public information at κ̃ but the same at κ= 0: W |κ=κ̃>W PUB |κ=κ̃ and W |κ=0=W PUB |κ=0.

Part (i) is a direct implication of Propositions 2 and 3. Part (ii) follows from (i) and (13). In the

next section, I impose more structure on the cost function that allows me to perform comparative

statics over an entire interval of cost parameters κ.

6 Cost specifications

From now on, I assume that C can be written as

C(F) = κΓ (F), (33)

where κ > 0 and Γ is strictly convex and satisfies A1-A3 and has Gateaux derivative γF . The

parameter κ scales both costs and marginal costs and will be used as a comparative statics pa-

rameter.31

Moreover, I shall distinguish cost functions according to their “risk properties” which char-

acterize how costs change when the distribution gets more risky in the mean preserving spread

30For the special case that the cost function is of the form C(F) = C̃(
∫

c(v) dF), C̃ , c both convex, Georgiadis et

al. (2024) analogously show that in a flexible moral hazard problem, the agent obtains a strictly positive rent if and

only if C̃ is not linear.
31The analysis carries over without much substantial change, but requires more case distinctions, if C(F) is of the

form
∫

V
ℓdF + κΓ (F) as in Corollary 1 as long as cF = ℓ+ κγF satisfies A3 and, respectively, A4, A5, or A6.
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sense. By Cerreia-Vioglio et al. (2017), the risk properties of a cost function are closely connected

to the shape of the Gateaux derivative. I distinguish between the following cases.

A4 Γ (F) = Γ0(MF) depends only on the mean MF of F where Γ0 : [v, v̄] → R is strictly increasing

and strictly convex and differentiable.

A5 γF is strictly concave for all F ∈ F .

A6 γF is strictly convex and differentiable for all F ∈ F .

Under A4, all that matters is the mean of a distribution but not its risk. Notice that the Gateaux

derivative γF(v) = Γ
′
0
(MF)v is linear, thus excluding the other two cases. Moreover, strict mono-

tonicity and convexity of Γ0 ensure that Γ satisfies A3 and is strictly convex. (Differentiability is

only imposed to simplify the exposition.)

By Cerreia-Vioglio et al. (2017), A5 implies that Γ (and thus C) is decreasing in risk, that is,

Γ (F) ≤ Γ (G) if F is a mean preserving spread of G. Likewise, A6 implies that Γ is increasing in

risk.32 (Differentiability of γF in A6 is only imposed to simplify the exposition.) As indicated in

the introduction, the risk properties of the cost function capture salient features of the application

in question. Note also that the risk properties and convexity are distinct properties.33

Throughout this section, I assume that v > 0,34 and I denote by T f the distribution that places

mass (1− f ) on v and mass f on v̄, f ∈ [0, 1].

The main results of this section characterize equilibria and welfare as a function of κ. I show

that in all three cases, there is a critical κ̂ so that the buyer’s equilibrium utility and total welfare

increase in κ for all κ ∈ (0, κ̂), and welfare under private information is strictly larger than when

the buyer’s valuation becomes public information. Moreover, under A4 and A5, equilibrium wel-

fare coincides with first-best welfare for κ larger than κ̂. In other words, the hold-up problem

causes no inefficiency in this case. In contrast, under A6 the equilibrium outcome differs from the

first-best (unless costs are so high that the default distribution is first-best).

I begin the analysis with noting a general property of the buyer’s equilibrium distribution that

follows directly from the fact that the seller’s equilibrium profit is v by Proposition 2. Define for

32In fact, Cerreia-Vioglio et al. (2017) show that C being decreasing (increasing) in risk is equivalent to cF being

concave (convex) for all F . I impose “strictness” in A5 and A6 to simplify the exposition, as this rules out multiplicity

of equilibria at various places.
33To see this, consider the class of “moment-based” cost functions Γ (F) = Γ̃ (

∫

c(v) dF) with Gateaux derivative

γF (v) = Γ̃
′(
∫

c(v) dF)c(v). Γ is convex if Γ̃ is convex, while the risk properties are determined by the shape of c.
34The case v = 0 is special in that the seller cannot guarantee himself a positive profit by charging a price equal to

the lowest possible valuation. In this case, there are “mis-coordination” equilibria where the buyer does not invest

and the seller charges a high price. The assumption v > 0 rules out these uninteresting equilibria. Gul (2001)

imposes a similar assumption.
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π,β ∈ [v, v̄], the distribution35

Gβ
π
(v) =









0 i f v < π

1−π/v i f v ∈ [π,β)

1 i f v ≥ β

. (34)

Gβ
π

is known as an “equal revenue distribution” because if the seller faces “demand” Gβ
π

, then any

price p ∈ [π,β] gives him the same revenue π. Expressed differently, a distribution F allows the

seller to get profit larger than π if it is located below G v̄
π

at some point v, because the price p = v

yields the seller profit v(1 − F(v−)) > v(1 − G v̄
π
(v)) = π. This observation readily implies that

because the seller’s equilibrium profit is v, the buyer’s equilibrium distribution must be located

(weakly) above G v̄
v
:

Lemma 1 Let (F, H) be an equilibrium. Then F is first order stochastically dominated by G v̄
v
, that

is, F(v)≥ G v̄
v
(v) for all v ∈ V .

6.1 Mean-based costs

In this section, I assume that A4 holds. I begin by characterizing the first-best distribution. (Recall

that Γ ′
0
> 0 and Γ ′′

0
> 0 by assumption.)

Lemma 2 Let A4 hold, and define

κ0 =
1

Γ
′
0(v̄)

, κ1 =
1

Γ
′
0(v)

, M FB(κ) =









v̄ i f κ ≤ κ0

Γ
′
0

−1
(1/κ) i f κ ∈ (κ0,κ1)

v i f κ1 ≤ κ

. (35)

Then any distribution F with mean MF = M FB(κ) is first-best.

To understand the lemma, notice that a first-best distribution maximizes the total surplus

∫

V

v dF − C(F) = MF − κΓ0(MF), (36)

which depends only on the mean, because costs are mean-based. Because MF ∈ [v, v̄], the claim

follows from the first-order condition for the maximizer of (36). Note also that because Γ0 is

strictly convex, the maximizer is unique whereas the first-distribution is unique only for κ outside

35This distribution plays a key role also in Gul (2001), Roesler and Szentes (2017), Condorelli and Szentes (2020),

Ravid et al. (2022).
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the interval (κ0,κ1). For κ ∈ (κ0,κ1), any distribution F with MF = M FB(κ) is a first-best distri-

bution. Finally, observe that M FB is strictly decreasing within (κ0,κ1) due to strict convexity of

Γ0.

Next, I turn to equilibrium. The next proposition shows that there are two types of (candidate)

equilibria. Subsequently, I characterize the conditions under which each of them occurs.

Proposition 4 Under A4, (F, H) is an equilibrium only if F(v) ≥ G v̄
v
(v) for all v ∈ V , and H = Th

with h < 1, that is, the seller choose the price p = v with probability 1− h and the price p = v̄ with

probability h. Moreover:

(i) (F, Th) is an equilibrium with h > 0 if and only if F(v̄−) = 1 − v/v̄, κΓ ′
0
(MF) < 1, and

h= 1− κΓ ′
0
(MF).

(ii) (F, Th) is an equilibrium with h= 0 if and only if F is a first-best distribution.

The key insight of the proposition is that in any equilibrium the seller randomizes between (at

most) the two prices v and v̄. To see the reason, recall that given a pricing distribution H of the

seller, the buyer’s objective is

∫

V

H(v) dF −κΓ0(MF). (37)

Now, H(v) =
∫ v

v
v − p dH(p) is the buyer’s expected trading surplus when her valuation is v.

Observe that H is convex because as the buyer’s valuation increases from v to v+ dv, her trading

surplus at prices p ≤ v increases linearly by dv, and, in addition, trade possibly occurs more

often, that is, also for prices p ∈ (v, v + dv]. Therefore, because costs depend only on the mean,

the buyer always (weakly) benefits from increasing the spread of her valuation distribution in a

mean-preserving way.

Now suppose that the seller were to use an interior price p ∈ (v, v̄) in her pricing strategy.

Then, H is strictly convex around p, and because costs are mean-based, the buyer’s objective is

therefore uniquely maximized by a distribution that puts probability only on the most extreme

valuations v and v̄. But this is inconsistent with equilibrium, because clearly for a price to be

optimal for the seller, it must be in the support of the buyer’s distribution.

While, therefore, the seller only randomizes between v and v̄, he cannot charge p = v̄ with

probability h= 1. The reason is that if p = v̄ the buyer’s utility is 0− C(F) and her best response

would be the default distribution. But then p = v̄ would yield zero profit and is not a best response

for the seller. Hence, h< 1 in equilibrium.

Part (i) of Proposition 4 describes a (candidate) equilibrium where the seller is indifferent

between v and v̄. For this to be the case, the buyer needs to put probability mass v/v̄ on the highest
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valuation v̄, hence 1−F(v̄−) = v/v̄. Moreover, the buyer obtains utility (1−h)(MF− v)−κΓ0(MF).

The first-order condition for the (mean of the) buyer’s best response thus implies 1−h= κΓ ′
0
(MF).

Part (ii) describes an efficient (candidate) equilibrium where the seller charges the low price

v with probability 1 (h= 0). Ex post trade is then efficient, and the buyer is the residual claimant

of the efficient surplus. Thus, choosing a first-best distribution is a best response.

When costs are mean-based, there can be multiple equilibria where the buyer’s distribution

has different means. To see this, consider condition (i) of Proposition 4. Given the seller chooses

price v̄ with probability h, the mean of the buyer’s best response is pinned down by the first order

condition 1− h= κΓ ′
0
(MF ). On the other hand, for the seller to be indifferent between the prices

v and v̄, all that is needed is that the buyer’s distribution puts mass v/v̄ on v̄. As long as this is

the case, any h ∈ [0, 1] is a best response for the seller. Because the requirement to put mass v/v̄

on v̄ is satisfied by various distributions with different means, there are multiple combinations of

mutual best responses.36

Even though there might be multiple equilibria, in any equilibrium, the seller’s profit is v by

Proposition 2. Therefore, an equilibrium which maximizes the buyer’s utility also maximizes total

welfare, and is also Pareto-optimal. It is therefore natural to focus on Pareto-optimal equilibria

which I characterize next.

To do so, recall from Lemma 2 that any distribution with mean M FB(κ) is a first-best distri-

bution. As κ increases, M FB(κ) increases from v to v̄, and so there is a (unique) κ̂ where the

first-best mean M FB(κ̂) is equal to the mean of the equal-revenue distribution G v̄
v
. In other words,

at the value κ̂, the equal-revenue distribution G v̄
v

is a first-best distribution.37 It is straightforward

to verify that κ̂ ∈ (κ0,κ1).

Proposition 5 Under A4, we have:

(i) If κ < κ̂, then:

(a) There is a unique Pareto-optimal equilibrium (F, H) with F = G v̄
v

and H = Th with h =

1− κΓ ′
0
(MG v̄

v
).

(b) In this equilibrium, the buyer’s utility UB and total welfare are strictly increasing in κ.

(ii) If κ ≥ κ̂, then:

(a) There is a first-best distribution F so that (F, H)with H = Th and h= 0 is a Pareto-optimal

equilibrium.

36Among all distributions F that put mass v/v̄ on v̄ and satisfy F ≥ G v̄
v
, the distribution Tv/v̄ has the smallest mean,

and the distribution G v̄
v

has the largest mean. Therefore, any distribution F with G v̄
v
≤ F ≤ Tv/v̄ and κΓ ′

0
(MF ) < 1 is

consistent with equilibrium.
37Formally, κ̂= 1/Γ ′

0
(MG v̄

v
).
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(b) In any Pareto-optimal equilibrium, total welfare is equal to the first-best.

(iii) If κ < κ1, then in any Pareto-optimal equilibrium, total welfare is strictly larger than in the

benchmark case when valuations are public information.

The proposition says that as the (marginal) cost parameter κ increases up to κ̂, the buyer’s

utility and total welfare increase. If κ is above κ̂, equilibrium is first-best, that is, the hold-up

problem causes no inefficiency. (Notice that since κ̂ < κ1, the hold-up problem does not disappear

for the uninteresting reason that costs are so high that the default distribution is efficient.) Finally,

if the default distribution is not first-best (κ < κ1), equilibrium welfare is larger than in the

benchmark with public information.

To understand the results, consider first κ < κ̂. In this case, there is no efficient equilibrium

as in part (ii) of Proposition 4. The reason is that (marginal) costs are too low to sustain an

efficient equilibrium: if the seller were to choose the low price v (h = 0), the buyer would best

respond with a first-best distribution. But for κ≤ κ̂, any first-best distribution is “too large” for the

seller to best respond with the low price. More formally, since MG v̄
v
< M FB if κ < κ̂, no first-best

distribution can be first order stochastically dominated by G v̄
v

and thus be part of an equilibrium

(recall Lemma 1). However, it is straightforward to verify that the combination F = G v̄
v

and

H = Th with h = 1− κΓ ′
0
(MG v̄

v
) satisfies part (i) of Proposition 4 and is thus an equilibrium. It is

uniquely Pareto-optimal because among all buyer distributions that are equilibrium candidates,

G v̄
v

has the maximal mean. This explain part (a).

The intuition behind part (b) is that as κ increases within the range (0, κ̂), there are two

effects on the buyer’s utility. On the one hand, there is a price effect, since the seller increases the

probability of charging the low price p = v as κ increases. One way to think about the price effect

is that as κ increases, the buyer’s marginal costs increase. Thus the buyer gains commitment not to

put too much mass on high valuations, inducing the seller to lower the price. On the other hand,

the buyer faces higher investment costs. In the range (0, κ̂), the price effect outweighs the cost

effect, and therefore UB increases with κ. In fact, since costs are mean-based, the buyer effectively

chooses a (uni-dimensional) mean M ∈ [v, v̄]. Since the buyer’s utility is (1−h)(M− v)−κΓ0(M),

the marginal benefit of doing so is the probability of the low price 1− h. Thus, given 1− h, the

buyer increases the mean until marginal costs are equal to marginal benefits: 1− h = κΓ ′
0
(MG v̄

v
).

On the other hand, for “inframarginal” units M < MG v̄
v
, marginal benefits are strictly larger than

marginal costs because costs are strictly convex, thus generating strictly positive utility for the

buyer. Now, as κ increases, the difference between marginal benefits and marginal costs for the

inframarginal units becomes more pronounced. As a result, the buyer’s utility as well as total

welfare increase in κ.

Next, consider the case κ ≥ κ̂. (Marginal) costs are now sufficiently high to sustain an effcient
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equilibrium as in part (ii) of Proposition 4. Indeed, because MG v̄
v
≥ M FB if κ ≥ κ̂, it follows

from an intermediate value argument that there is an equal revenue distribution Gβ
v

with largest

support point β < v̄ such that M
G
β
v
= M FB. Since costs are mean-based, Gβ

v
is thus a first-best

distribution, and thus a best response by the buyer to the low price. Moreover, since Gβ
v

is an equal

revenue distribution, charging the low price for sure is a best response for the seller. Clearly, the

equilibrium is Pareto-optimal, and this explains part (ii) of the proposition.

Finally, part (iii) is a direct consequence of the fact that the buyer’s utility is strictly positive

for all κ < κ1.

6.2 Strictly concave Gateaux derivative

In this section, I assume A5. The analysis is almost identical to the case with mean-based costs for

two reasons. First, I show that because costs are decreasing in risk, the first-best distribution puts

mass only on the extreme valuations v and v̄. Second, for the same reason as with mean-based

costs, in any equilibrium, the seller will randomize between v and v̄. Under A5, this will imply

that also the buyer’s best response puts mass only on v and v̄. However, since distributions that

put mass only on v and v̄ can be described by their mean alone, the setting becomes effectively

mean-based. As a consequence, Proposition 4 and 5 carry over almost literally. I begin with the

characterization of the first-best distribution.

Lemma 3 Under A5, there is a unique first-best distribution given by F FB = T f FB where f FB mini-

mizes f (v̄ − v)− C(T f ) over f ∈ [0, 1].

To understand the intuition, consider the problem of maximizing total surplus for a given mean:

max
F

∫

V

v dF − C(F) = MF − C(F) s.t . MF = M . (38)

Because C is decreasing in risk, F minimizes costs by maximizing risk, that is, by putting mass

only on the extreme valuations v and v̄. Thus, the solution to (38) is a distribution T f and induces

surplus f (v̄− v)−C(T f ). (Uniqueness of the solution follows formally from strict concavity of γF

which implies that C is “strictly” decreasing in risk.)

I next derive necessary conditions for equilibrium. First, observe that for the same reason as

with mean-based costs, in any equilibrium, the seller randomizes only between the prices v and

v̄. Moreover, the buyer’s best response is now in the class of distributions T f which put mass only

on the extreme valuations v and v̄. The reason is the same as in the previous paragraph, because

if the seller randomizes between v (with 1 − h) and v̄ (with h), the buyer’s expected utility is
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(1−h)(MF − v)−C(F), and thus she benefits by increasing the spread of the distribution (strictly

so since γF is strictly concave).

Finally, by Lemma 1, in equilibrium F is first order stochastically dominated by G v̄
v
. For a

distribution F = T f , this is the case if and only if f ≤ v/v̄ or, equivalently, T f ≥ Tv/v̄ . Finally, the

same argument as with mean-based costs implies h< 1 in equilibrium. The following proposition

summarizes.

Proposition 6 Under A5, (F, H) is an equilibrium only if H = Th with h < 1, and F = T f with

F ≥ Tv/v̄ .

By Lemma 3 and Proposition 6, the search for first-best and the buyer’s equilibrium distri-

butions can be restricted to distributions T f . Moreover, the mean M = (1− f )v + f v̄ of such a

distribution uniquely pins down f =
M−v

v̄−v
. Thus, instead of searching for first-best or equilibrium

values of f , one can as well search for first-best or equilibrium values of M ∈ [v, v̄]. With this

change of variables, the setting becomes effectively mean-based, and the results from the previous

section apply. Specifically, define the cost of T f with mean M as

Γ0(M) = Γ (TM−v

v̄−v
). (39)

Γ0 is then increasing and strictly convex with derivative38

Γ
′
0
(M) =

γT M−v
v̄−v

(v̄)− γT M−v
v̄−v

(v)

v̄ − v
. (41)

The characterization of the mean of the first-best distribution is then identical to Lemma 2. Like-

wise, given that the seller chooses Th in equilibrium, the buyer’s utility from T f in terms of its

mean is (1− h)(M − v)− κΓ0(M) which is formally identical to the case with mean-based costs.

Therefore, Proposition 4 and Proposition 5 carry over verbatim with the only difference that the

distribution G v̄
v

is replaced by the distribution Tv/v̄ . The reason is that now the buyer’s equilibrium

distribution is in the class of distributions F = T f ≥ Tv/v̄.

Remark Because under A4 and A5, the equilibrium outcome is first-best for κ ≥ κ̂, the equilibrium

outcome also coincides with the buyer-optimal commitment outcome as analyzed in Condorelli

and Szentes (2020). The reason is that seller’s profit when the buyer has commitment is never

38To see this, note that T f +ε = T f + ε(T1 − T0), and thus

d

d f
Γ (T f ) = lim

ε→0

1

ε

�

Γ (T f + ε(T1 − T0))− Γ (T f )
�

= δΓ (T f ; T1 − T0) =

∫

V

γT f
d(T1 − T0) = γT f

(v̄)− γT f
(v). (40)

The expression for Γ ′
0
(M) now follows with the chain rule.
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smaller than v, because charging the price v guarantees profit v. Therefore, if κ ≥ κ̂, then even

with commitment, the buyer cannot attain higher utility than her equilibrium utility W FB − v. In

other words, commitment has no value for the buyer.

6.3 Strictly convex Gateaux derivative

In this section, I assume A6. A somewhat different picture emerges in this case compared to the

previous sections. The first-best distribution is now deterministic, and in equilibrium, the seller

now randomizes over an interval of prices, and equilibria will not be efficient (unless costs are so

high that the default distribution is first-best). I begin by characterizing the first-best.

Lemma 4 Under A6, a first-best distribution is a deterministic distribution F FB = 1[vFB ,v̄] that puts all

mass on vFB where vFB maximizes v−κΓ (1[v,v̄]) over v ∈ [v, v̄]. In particular, the default distribution

is first-best if and only if

κ ≥ κ1 =
1

γ′
1[v,v̄]
(v)

. (42)

Intuitively, consider again problem (38). Because now C is increasing in risk, F minimizes costs by

minimizing risk, that is, by concentrating all mass on a single point. (That this is strictly optimal

follows formally from the strict convexity of γF .) Thus, the solution to (38) is deterministic.

Moreover, the total surplus induced by a distribution that puts all mass on v is v − κΓ (1[v,v̄]).

The characterization for when the default distribution is first-best will be used below when I

compare equilibrium and first-best. The formal derivation follows from a general characterization

of the first-best distribution that I give in the appendix.

I next characterize equilibrium. Recall that when costs are mean-based or decreasing in risk,

the seller randomizes between v and v̄ in equilibrium. This is now no longer the case. The reason

is that given this strategy by the seller, the buyer’s expected utility is (1−h)(MF− v)−C(F). Since

costs are now increasing in risk, the same argument as in the previous paragraph implies that the

buyer would optimally want to concentrate her valuation on a single point. But then it is not a

best response for the seller to randomize between v and v̄.

To state equilibrium formally, note that strict convexity of γF implies that the function v −

κγF (v) has a unique maximizer v∗(F) on [v, v̄].

Proposition 7 Under A6, (F, H) is an equilibrium if and only if

F = Gv∗(F)
v

, H(p) = κγ′
F
(p)1[v,v∗(F))(p) + 1[v∗(F),v̄](p). (43)
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Proposition 7 says that the buyer’s distribution is an equal revenue distribution and that the seller’s

pricing distribution is essentially equal to the (ordinary) derivative of the Gateaux derivative. In

particular, the supports [v, v∗(F)] of both distributions are convex and identical.

The proof of the proposition shows that (only) strategies of the form (43) satisfy the equilib-

rium characterization in Proposition 1. This can be verified using the same arguments as in the

proof of Proposition 1 in Gul (2001). The difference is that Gul (2001) considers the case with

linear cost so that γF does not depend on F .39 While this does not matter for the formal argument,

note, however, that whenever costs are not linear, the equilibrium is characterized only implicitly

because F depends on v∗(F).

A more explicit characterization can be obtained by noting that v∗(F) = β is the upper sup-

port bound of an equal revenue distributions F = Gβ
v
. Thus, equilibrium is characterized by the

solutions to the equation v∗(Gβ
v
) = β . Since v∗(F) maximizes v −κγF (v), v∗(F) is the solution to

the respective first order condition. This pins down the equilibrium value of β as stated next.

Proposition 8 Under A6, (F, H) is an equilibrium if and only if

F = Gβ
v
, H(p) = κγ′

G
β
v

(p)1[v,β)(p) + 1[β ,v̄](p), (44)

and β is any value that satisfies:

κγ′
G
β
v

(β) = 1, or β = v and κγ′
G

v
v

(v) ≥ 1, or β = v̄ and κγ′
G v̄

v
(v̄) ≤ 1. (45)

In general, there might be multiple solutions β to (45) and thus multiple equilibria. A sufficient

condition for there to be a unique solution β is that γ′
G
β
v

(v) is strictly increasing in β for all v ∈ V .

To see this, note that the convexity of γ then implies that the function γ′
Gx

v
(x) is strictly increasing

in x , and an intermediate value argument implies that (45) has a unique solution.40 One class of

cost functions which satisfies this property is the class of “moment-based” cost functions Γ (F) =

Γ̃ (
∫

V
c(v) dF) where Γ̃ is differentiable, increasing and convex, and c is differentiable, increasing

and strictly convex.41

For the purpose of comparative statics with respect to κ, I shall now assume that equilibrium

is unique. Recall that κ1 is the critical value from which on the default distribution becomes

first-best.

39As in Gul (2001), differentiability of γF is not needed for the result. In this case, the derivative of γF in (43) has

to be replaced by the right derivative.
40Recall that a differentiable convex function is also continuously differentiable.
41In this case, γF (v) = Γ̃

′(
∫

V
c(v)dF)c(v), and γ′

F
(v) = Γ̃ ′(
∫

V
c(v)dF)c′(v). As F increases in the FOSD sense, so

does Γ̃ ′(
∫

V
c(v) dF) as well as γ′

F
(v). Because Gβ

v
increases in the FOSD sense as β increases, the claim follows.
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Proposition 9 Suppose that A6 holds, and let

κ̂ =
1

γ′
G v̄

v
(v̄)

. (46)

Moreover, suppose that there is a unique equilibrium. Then, we have:

(i) The buyer’s utility UB and total welfare is strictly increasing in κ for κ ∈ (0, κ̂).

(ii) Total welfare when valuations are private information is strictly larger than when they are

public for all κ < κ1.

(iii) First-best welfare is strictly larger than equilibrium welfare for all κ < κ1, that is, unless the

default distribution is first-best.

The intuition behind part (i) is similar to that behind part (i) of Proposition 5. As κ increases

in the range (0, κ̂), the direct effect of facing higher investment costs is outweighed by the indirect

strategic effect that the seller reduces the price (in the first order sense). More precisely, observe

that for values κ ≤ κ̂, the buyer chooses F = G v̄
v

in equilibrium. Therefore, the Gateaux deriva-

tive κγG v̄
v

becomes steeper as κ increases. By Proposition 7, this means that the seller’s pricing

distribution decreases in the first order sense. This price effect outweighs the direct cost effect

because costs Γ are strictly convex.

Part (ii) follows from the fact that for κ < κ1 the equilibrium distribution is different from the

default distribution. Therefore, by Proposition 3, the buyer’s utility is strictly positive, and thus

total welfare is strictly larger than when valuations are private information.

While parts (i) and (ii) are analogous to the case with linear or strictly concave Gateaux

derivative from the previous sections, part (iii) is different. The reason is that unless the buyer’s

equilibrium distribution is the default distribution, the buyer’s and the seller’s distribution have

the same (non-degenerate) interval support [v,β], leading to trade inefficiencies ex post. The

equilibrium outcome is therefore not efficient.

I conclude this section with an example that sheds light on the difference between equilibrium

and first-best welfare.

6.3.1 Example

Consider the second moment QF =
∫

V
v2 dF , and define

Γ (F) =
1

4
Q2

F
−

1

4
v4 (47)
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with Gateaux derivative

γF(v) =
1

2
QF v2. (48)

Γ is evidently convex. Since Fmin places all mass on v, the second term in (47) ensures that

Γ (Fmin) = 0, in line with the normalization in (12).

With an eye on applying Proposition 8, note that since Gβ
v

has density v/v on [v,β) and a

mass point of size v/β at β , we have

Q
G
β
v
=

∫ β

v

v2
v

v2
dv + β2 ·

v

β
= 2vβ − v2 (49)

so that γ′
G
β
v

(v) = [2vβ − v2]v. Condition (45) for the equilibrium value β therefore writes

κ[2vβ2 − v2β] = 1, or β = v and κv3 ≥ 1, or β = v̄ and κ[2vv̄2 − v2 v̄]≤ 1. (50)

Thus, I obtain the following equilibrium characterization where I calculate the buyer’s utility using

(22).

Lemma 5 Let Γ be given by (47). Let β̂ be the positive solution to the quadratic equation

2vκβ̂2 − v2κβ̂ − 1 = 0. (51)

Define κ̂ = 1

vv̄(2v̄−v)
and κ1 =

1

v3 . Then the equilibrium value β in Proposition 8 is

β =









v̄ i f κ ≤ κ̂

β̂ i f κ ∈ (κ̂,κ1)

v i f κ ≥ κ1

. (52)

Moreover, the buyer’s equilibrium utility is UB = κv2
�

β − v
�2

.

The blue solid line in Figure 3 illustrates the typical shape of equilibrium welfare UB + v as a

function of κ. It increases linearly in the range κ ∈ (0, κ̂) and then decreases. At κ1, investment

costs become prohibitive, and F = Fmin in equilibrium.

Next, I characterize the first-best which follows straightforwardly from Lemma 4.

Lemma 6 Let Γ be given by (47). Let κ0 = 1/v̄3. Then the first-best distribution is F FB = 1[vFB ,v̄]
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where

vFB =









v̄ i f κ ≤ κ0

κ−
1
3 i f κ ∈ (κ0,κ1)

v i f κ ≥ κ1

. (53)

Figure 3 plots the first-best welfare (red, dashed line). The difference between first-best and

equilibrium welfare is largest at κ = 0 (corresponding to linear costs) and then decreases with

κ until it becomes zero at the level κ1 where costs become prohibitive so that zero investment is

efficient.

κ
κ1κ̂κ0

v

Figure 3: Total equilibrium welfare (blue) and first-best welfare (red, dashed) for the cost speci-

fication (47) as a function of κ for the values v = 1, v̄ = 3/2, κ0 = 1/12, κ1 = 1/2.

7 Investment and information acquisition

My model can be extended to allow an interpretation where it is costly for the buyer not only to

invest in, but also to learn about, her valuation. Ravid et al. (2022) consider a framework where

the buyer’s true valuation is a value θ in a compact interval Θ. Initially, the buyer only has a prior

belief F0 ∈ F over Θ, but she can acquire a signal about her valuation at a cost before trading.

Since the buyer’s preferences for the good are linear in the valuation, a signal corresponds to a

distribution F ∈ F of posterior means that is a mean preserving contraction (MPC) of the prior

F0. Optimizing over a functional subject to the MPC constraint is, by now, a well-studied problem

when the functional is linear (Dworczak and Martini, 2019, Kleiner et al., 2021), but is difficult

when the functional is non-linear such as when information acquisition costs are non-linear.

The approach presented in this paper can however be applied to include information acquisi-

tion when one restricts the space Θ of the buyer’s true valuations to consist of only two possible

values, as I now illustrate. Suppose that Θ = {v, v̄}. A prior then corresponds simply to a mean
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M0 ∈ V = [v, v̄], and any signal corresponds to a cdf F ∈ F over posterior means v ∈ V with the

simplified MPC constraint that F has mean M0, that is,
∫

V
vdF = M0.

Specifically, suppose that without investing, the buyer’s valuation is equal to the lowest possi-

ble valuation v with probability 1. The buyer can invest to increase the mean MF of the valuation

distribution F at a cost ρϕ(MF), ρ ≥ 0, where ϕ is strictly increasing and convex. The mean MF

then corresponds to the prior, and the buyer can learn about the true valuation given the prior at

a cost. Specifically, consider a strictly convex function r : V → R and let σ
∫

V
r(v)− r(MF) dF ,

σ ≥ 0, be the (“posterior-separable”) cost of information acquisition. Since r is convex, informa-

tion acquisition costs increase in the mean preserving spread order, or equivalently, in Blackwell

informativeness. Moreover, acquiring no information, which corresponds to choosing the degen-

erate distribution 1[M ,v̄] that places probability 1 on M , is costless.

The cost function

C(F) = ρϕ(MF) +σ

∫

V

r(v)− r(MF ) dF (54)

therefore combines the cost of investing and the cost of information acquisition. Suppose that

ρϕ − σr is strictly convex. Then C is convex, and if r is strictly increasing, then the Gateaux

derivative

cF(v) = [ρϕ
′(MF)−σr ′(MF)]v +σr(v) (55)

is strictly increasing and strictly convex. Therefore, Proposition 8 applies unchanged with κγF

replaced by cF . Moreover, as explained after the statement of Proposition 8, equilibrium is unique

if c′
G
β
v

(v) is strictly increasing in β for all v ∈ V . This is satisfied here because ρϕ −σr is strictly

convex.

I now use these observations to obtain the following comparative statics result.

Lemma 7 Let C be given by (54). Let ϕ, r be strictly increasing, differentiable, and strictly convex,

and let ρϕ − σr be strictly convex. Then there are ρ̂, σ̂(ρ) so that for all (ρ,σ) with ρ < ρ̂ and

σ < σ̂(ρ), the buyer’s equilibrium utility and total welfare is strictly increasing in ρ and strictly

decreasing in σ.

The formal reason behind this result is similar to the reason behind Propositions 5 and 9. As

ρ increases or σ decreases, the convex part of the cost function C goes up. Thus, an increase in

ρ or a decrease in σ corresponds to an increase in κ in Propositions 5 and 9.

Economically, Lemma 7 suggests that the comparative statics with respect to investment and

information acquisition costs are opposed to one another. While higher investment costs (higher
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ρ) attenuate the hold-up problem, higher information acquisition costs (higher σ) aggravate the

hold-up problem. The intuition behind this difference is that higher information acquisition costs

diminish the buyer’s ability to extract surplus in the form of information rents.

8 Conclusion

In this paper, I reconsider the hold-up problem with unobservable investments when the buyer’s

investment is flexible. I argue that the severity of the hold-up problem critically depends on the

shape of investment costs. I show that compared to the case with linear costs, the buyer’s equi-

librium utility and equilibrium welfare is higher with convex costs. When, in addition, costs are

mean-based or decreasing in risk and costs are sufficiently convex, the hold-up problem disap-

pears in the sense that the equilibrium outcome is efficient.

I have argued that my results are relevant for applications to the extent that the shape of

the cost function captures salient features of such applications. For example, in the context of a

manufacturer’s investments in quality improvement, while convexity captures increasing marginal

costs of quality improvements, the risk properties of the cost function capture, in a stylized way,

whether making relatively small but certain quality improvements is more or less costly than

making large quality improvements with small probability. While in this paper, I adopt a reduced

form approach and impose assumptions on the cost function directly, it is an interesting avenue

for future work to micro-found the shape of the cost function building on a specific application.

On a related note, my results suggest that, if feasible, the investing party has incentives to design

the shape of the cost function in an attempt to create commitment.

Finally, the framework presented in this paper is sufficiently tractable to extend the model to

allow for competition between multiple buyers or multiple sellers or both. More generally, the

framework is also portable to other applications with flexible pre-investments.

A Appendix

Proof of Proposition 1 I only show part (ii). (Part (i) follows with the same arguments as the

proof in footnote 22 in Ravid et al., 2022.) Note first that it is a standard argument that the

(mixed) strategy H is a best response to F for the seller if and only (16) and (17) hold, where π is

the seller’s best response profit. Because the seller can guarantee himself the profit v by choosing

the price v with probability 1, we have π≥ v.

That the buyer’s best response to H is characterized by (14) and (15) is shown in the main

text. QED
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Proof of Proposition 2 Note first that by setting the price v with probability 1, the seller can

ensure profit v. Thus, v ≤ Π. To see that v ≥ Π, assume to the contrary that v < Π. Let

pℓ =min supp(H) be the lower support bound of the seller’s pricing distribution.

I first show that pℓ 6∈ supp(F). Indeed, since v < Π = (1− F(p−
ℓ
))pℓ, we have v < pℓ. Because

H(v) = H(pℓ) = 0 by definition of H, and since cF (v) < cF (pℓ) by A3, it follows

H(v)− cF (v)−λ = 0− cF (v)−λ > 0− cF (pℓ)−λ = H(pℓ)− cF (pℓ)−λ. (56)

Therefore, (14) and (15) imply that pℓ 6∈ supp(F).

Now distinguish two cases:

(a) F(p−
ℓ
) < 1. Since F(v̄) = 1 and pℓ 6∈ supp(F), this implies that pℓ < v̄. Therefore, since

pℓ 6∈ supp(F), there is q > pℓ with F(p−
ℓ
) = F(q), and hence the seller could increase profits by

increasing the price from pℓ to q, contradicting that pℓ ∈ supp(H).

(b) F(p−
ℓ
) = 1. Then the seller’s profit from price pℓ is zero, and hence, since pℓ ∈ supp(H),

we have that Π= 0. This contradicts that v < Π. QED

Proof of Proposition 3 To show the generality of the proposition, I prove it without invoking A3.

In this case, cF(v) in (22) is replaced by minv∈V cF (v). Moreover, without A3, Fmin is defined as

the distribution that minimizes C(F).

As to (i). I first show that λ = −minv∈V cF (v). Indeed, let vℓ =min supp(F), pℓ =min supp(H)

be the lower support bounds.

Observe first that vℓ ≤ pℓ. Otherwise, if pℓ < vℓ, then F(p−
ℓ
) = 0 so that the seller’s profit at pℓ

is (1− F(p−
ℓ
))pℓ = pℓ. But since F(v−

ℓ
) = 0 by definition of vℓ, the seller could strictly increase his

profit by deviating to the price p = vℓ. By (16) and (17), this contradicts that pℓ is in supp(H).

Next, I show that vℓ ∈ argminv∈V cF(v). To the contrary, suppose cF (vℓ) > cF (v̂) where v̂ ∈

argminv∈V cF(v). Because vℓ ≤ pℓ, we have that H(vℓ) = 0. Therefore, because (trivially) H(v̂) ≥

0, we have

H(vℓ)− cF (vℓ)−λ < H(v̂)− cF(v̂)−λ. (57)

By (14) and (15), this contradicts that vℓ is in supp(F).

Therefore, because vℓ ≤ pℓ implies H(vℓ) = 0, and because cF(vℓ) = minv∈V cF(v), we infer

from (15) that

0= H(vℓ)− cF (vℓ)−λ = −min
v∈V

cF (v)−λ, (58)

as desired.
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To see the expression for UB, recall from (5) that UB(H, F) =
∫

V
H(v) dF(v) − C(F). Thus,

plugging in H from (15) yields (22) with cF (v) replaced by minv∈V cF(v).

As to (ii). On the one hand, when C is linear, we have
∫

V
cF(v) dF =
∫

V
c(v) dF = C(F). Thus,

UB = −minv∈V c(v) by (22). On the other hand, the default distribution Fmin minimizes C(F) =
∫

c(v) dF and thus places full mass on points v where c is minimal. Thus, C(Fmin) =minv∈V c(v).

Finally, recall that C(Fmin) = 0 by assumption. Taken together, this implies UB = 0.

As to (iii). The proof is given in the main text. QED

Proof of Corollary 1 The proof is given in the main text. QED

Proof of Lemma 1 The proof is given in the main text. QED

Proof of Lemma 2 The proof is given in the main text. QED

Proof of Proposition 4 Let (F, H) be an equilibrium. To see the first part of the statement, note

that F is first order stochastically dominated by G v̄
v

by Lemma 1. Moreover, to see that the seller’s

pricing distribution is of the form Th, recall from (18) that in equilibrium every valuation in the

buyer’s support maximizes the function H(v)− cF(v). Because H is convex by definition, and cF is

linear for mean-based costs, either (1) H(v)− cF(v) is maximized at a corner point v or v̄, or (2)

any v ∈ [v, v̄] is a maximizer, and H is, in fact, linear itself. In case (1), because the buyer has no

valuation in (v, v̄), setting a price in (v, v̄) is strictly suboptimal. Case (2) implies, by definition,

that H
′
= H is constant on (v, v̄), and thus H has no support point in (v, v̄). Finally, the argument

that h< 1 in equilibrium is in the main text.

It remains to show (i) and (ii).

As to (i). We have that h ∈ (0, 1) in equilibrium if and only if the seller is indifferent between

the prices v and v̄ which is the case if and only if F(v̄−) = 1− v/v̄. Further, F is a best response

by the buyer if and only if (14) and (15) hold. Note that H(v) = (1− h)v (since H = Th), and

that cF (v) = κΓ
′
0
(MF)v. Hence, (14) and (15) write

(1− h)v − κΓ ′
0
(MF)v −λ = 0 ∀v ∈ supp(F), (59)

(1− h)v − κΓ ′
0
(MF)v −λ ≤ 0 ∀v ∈ V. (60)

Since F(v̄−) = 1− v/v̄, F has a mass point of mass v/v̄ at v̄. Because v/v̄ < 1, F has at least one

other point in its support, and thus (59) is true for at least two points in V . Since the function on

the left hand side is linear in v, it follows that (59) is actually true for all points in V . Thus, (59)

and (60) are equivalent to

(1− h)v − κΓ ′
0
(MF)v −λ = 0 ∀v ∈ V. (61)
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This is equivalent to h = 1− κΓ ′
0
(MF) and λ = 0. Thus, h ∈ (0, 1) is equivalent to κΓ ′

0
(MF ) < 1.

This completes the proof of (i).

As to (ii). To see the “only if”-part, let (F, Th) be an equilibrium with h= 0, that is, p = v with

probability 1. Then the buyer’s utility is MF − v−κΓ0(MF) which is equal to the full surplus minus

the constant v. Therefore, the buyer’s best response F is a first-best distribution.

To see the “if”-part, let F be a first-best distribution with F(v) ≥ G v̄
v
(v) for all v ∈ V . Then,

in particular F(v̄−) ≥ G v̄
v
(v̄−) = G v̄

v
(v̄) = 1 − v/v̄. In other words, the mass on v̄ is weakly less

than v/v̄. Thus, the seller weakly prefers p = v over p = v̄. Hence, h = 0 is a best response by

the seller. Moreover, given h = 0, F is a best response by the buyer as argued in the previous

paragraph, and this completes the proof. QED

Proof of Proposition 5 As to (i),(a). Let κ ≤ κ̂. This implies that MG v̄
v
< M FB. Then there is

no first-best distribution F FB that is first order stochastically dominated by G v̄
v
. Hence, F FB 6≥ G v̄

v
.

Hence, by part (ii) of Proposition 4, there is no equilibrium with h= 0.

Next, I show that (G v̄
v
, Th) with h= 1− Γ ′

0
(MG v̄

v
) is an equilibrium. By part (i) of Proposition 4,

it is sufficient to show that κΓ ′
0
(MG v̄

v
) < 1. Indeed, because v ≤ MG v̄

v
< M FB, Lemma 2 implies that

either M FB = v̄ and thus κΓ ′
0
(v̄) = κΓ ′

0
(M FB) < 1, or M FB = Γ ′

0

−1
(1/κ) and thus κΓ ′

0
(M FB) = 1.

Since Γ0 is strictly convex, Γ ′
0

is strictly increasing, and so the fact that MG v̄
v
< M FB implies that

κΓ ′
0
(MG v̄

v
) < 1, as desired.

To complete the proof of part (a), I now argue that (G v̄
v
, Th) with h = 1− Γ ′

0
(MG v̄

v
) is uniquely

Pareto-optimal. Indeed, let (F̃ , Th̃) be another equilibrium. As remarked above, there is no equi-

librium with h̃ = 0. Hence, h̃ = 1 − Γ ′
0
(MF̃ ) by part (i) of Proposition 4. The buyer’s utility in

(F̃ , Th̃) is

ŨB = (1− h)(MF̃ − v)− κΓ0(MF̃) = κ[Γ
′
0
(MF̃)(MF̃ − v)− Γ0(MF̃)]. (62)

The derivative with respect to MF̃ is κΓ ′′
0
(MF̃)(MF̃ − v) which is positive since Γ0 is strictly convex.

Therefore, the Pareto-optimal equilibrium maximizes MF̃ . Recall from Proposition 4 that F̃ ≥ G v̄
v

in any equilibrium. Therefore, MF̃ < MG v̄
v

for any F̃ 6= G v̄
v
, and hence (G v̄

v
, Th) is uniquely Pareto-

optimal.

To complete the proof of part (i), it remains to show (b). Note that since the default distri-

bution puts all mass on v, we have Γ0(v) = 0 by (12). Therefore, (62) implies that the buyer’s

equilibrium utility is

UB = κ[Γ
′
0
(MG v̄

v
)(MG v̄

v
− v)− (Γ0(MG v̄

v
)− Γ0(v))]. (63)

Note that the term in the square brackets is strictly positive because strict convexity of Γ0 implies
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Γ
′
0
(x)(x − v)> Γ0(x)− Γ0(v) for all x > v. Therefore, UB is strictly increasing in κ.

As to (ii),(a). I first show that there is an equilibrium (F, Th) with h = 0 and a first-best

distribution F . Indeed, κ ≥ κ̂ implies MG v̄
v
≥ M FB ≥ v = MG

v
v
. Thus, an intermediate value

argument delivers that there is β ≤ v̄ so that M
G
β
v
= M FB, and hence Gβ

v
is a first-best distribution

by Lemma 2. Moreover, Gβ
v
≥ G v̄

v
by definition, and thus (Gβ v

v
, Th) with h= 0 is an equilibrium by

part (ii) of Proposition 4.

Since the seller chooses p = v with probability 1 in this equilibrium, and Gβ
v

is a first-best

distribution, the buyer extracts the residual first-best surplus W FB − v. Since the seller gets v in

any equilibrium by Proposition 2, there is no equilibrium in which the buyer gets a higher utility.

It follows that (G v̂
v
, T0) is a Pareto-optimal equilibrium.

Part (b) is obvious, and this completes the proof of part (ii).

Finally, part (iii) follows from part (iii) Proposition 3 and (13) together with the observation

that for κ < κ1, we have C(F) 6= 0 for the equilibrium distributions F from part (i) and (ii). QED

Proof of Lemma 3 To prove the lemma, I first characterize the first-best distribution for general

cF .

Lemma A.1 F FB maximizes
∫

V
v dG − C(G) if and only if there is λFB such that

v − cF FB (v)−λFB ≤ 0 ∀v ∈ V, (64)

v − cF FB (v)−λFB = 0 ∀v ∈ supp(F FB). (65)

The proof of Lemma A.1 is identical to the proof that establishes the best response conditions (14)

and (15) for the buyer. The only difference is that in the objective function, the buyer’s expected

gross benefit
∫

V
H(v) dF is replaced by

∫

V
v dF . QED

I can now prove Lemma 3. Because cF is strictly concave, v − cF (v) is strictly convex and

thus maximized at the points v or v̄. Thus, a distribution that satisfies (64) and (65) must be

a two-point distribution T f for some f , and the optimal f FB maximizes
∫

V
v dT f − C(T f ) =

f (v̄ − v) + v − C(T f ). Since C is strictly convex by assumption, C(T f ) is strictly convex in f , and

thus f FB is unique. QED

Proof of Proposition 6 The proof is given in the main text except for the claim that F = T f in

any equilibrium. To see this, note that by (18), any point in the support of the buyer’s equilibrium

distribution maximizes H(v)− κγF (v). Because of convexity of H and strict concavity of γF , the

only possible maximizers are v or v̄. Thus, F = T f . QED

Proof of Lemma 4 By Lemma A.1, a first-best distribution is characterized by the conditions (64)

and (65). Because γF is strictly convex for all F , the function v−κγF (v) has a unique maximizer
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for all F . Therefore, the conditions (64) and (65) can be satisfied only for a distribution F FB

which is a degenerate distribution 1[vFB ,v̄] for some point vFB. Since a degenerate distribution that

puts all mass on v generates total welfare v − κΓ (1[v,v̄]), vFB maximizes this expression.

To see (42), note that by (64) and (65), the default distribution 1[v,v̄] is first-best if and only if

the only point in its support, v maximizes v−κγ1[v,v̄]
(v). This the case if and only if 1−κγ′

1[v,v̄]
(v)≤

0, that is, (42). QED

Proof of Proposition 7 That (F, H) as stated in the proposition satisfies the equilibrium conditions

in Proposition 1 can be verified using the arguments as in the proof of Proposition 1 in Gul (2001).

I omit the details. QED

Proof of Proposition 8 Because v∗(Gβ
v
) maximizes v − κγ

G
β
v
(v), we have that v∗(Gβ

v
) is given as

the solution v∗ to the first order condition

κγ′
G
β
v

(v∗) = 1, or v∗ = v and κγ′
G
β
v

(v) ≥ 1, or v∗ = v̄ and κγ′
G
β
v

(v̄) ≤ 1. (66)

By Proposition 7, the equilibrium value of β is given by v∗(Gβ
v
) = β . Inserting this in (66) yields

the claim. QED

Proof of Proposition 9 As to (i). Since κ < κ̂, Proposition 8 implies that F = G v̄
v

in equilibrium.

By part (i) of Proposition 3, the buyer’s equilibrium utility is thus

UB = κ

�∫

V

γG v̄
v
(v) dK v̄

v
(v)− Γ (G v̄

v
)−min

v∈V
γG v̄

v
(v)

�

. (67)

It follows with the same arguments as in part (iii) of Proposition 3 that the term in brackets is

strictly positive. Thus, since G v̄
v

is independent of κ, UB is strictly increasing in κ for all κ < κ̂.

As to (ii). Recall that Fmin is uniquely given by the distribution 1[v,v̄] that places mass 1 on

v. For κ < κ1, Proposition 8 implies that F = Gβ
v

with β > v in equilibrium. By part (iii) of

Proposition 3, it follows that UB > 0. Hence, since seller profit is v by Proposition 2, total welfare

UB + v is strictly larger than v =W PUB.

As to (iii). By Lemma 4 and Proposition 8, the equilibrium distribution F coincides with the

first-best if and only if F = G
v
v = 1[v,v̄] and F FB = 1[v,v̄]. The former is the case if κ ≥ κ1, and

the latter is the case if v maximizes v − κγ
1[v,v̄]
(v) which is also equivalent to κ ≥ κ1. Therefore,

first-best welfare is strictly larger than equilibrium welfare if and only if κ < κ1. QED

Proof of Lemma 5 The characterization of the equilibrium value β follows by straightforward

algebra from Proposition 8 and (50).
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It remains to calculate UB. By (22) and (48):

∫

V

cF(v) dF(v) =
1

2
κQF

∫

V

v2 dF(v) =
1

2
κQ2

F
, (68)

and minv∈V cF(v) = cF (v) =
1
2
κQF v2. Hence, by (22),

UB =

∫

V

cF(v) dF(v)− C(F)−min
v∈V

cF (v) (69)

=
1

2
κQ2

F
−

1

4
κQ2

F
+

1

4
κv4 −

1

2
κQF v2 (70)

=
1

4
κ
�

Q2
F
+ v4 − 2QF v2
�

(71)

=
1

4
κ
�

QF − v2
�2

. (72)

Plugging in QF = 2vβ − v2 for F = Gβ
v

from (49) yields the claim. QED

Proof of Lemma 6 By Lemma 4, vFB maximizes

v −κΓ (1[v,v̄]) = v −
1

4
κv4 +

1

4
κv4. (73)

Expression (53) now follows from the first order condition for this maximization problem. QED

Proof of Lemma 7 Notice first that since cF is strictly increasing so that A3 holds, the default

distribution puts all mass on v. Therefore, by (12),

C(Fmin) = ϕ(v) = 0. (74)

Moreover, by Proposition 2, A3 also implies that the seller’s profit is v so that total welfare is

UB + v. Hence, it is enough to show the claim for UB only. To do so, define

ρ̂ =
1

ϕ′(MG v̄
v
)
, σ̂(ρ) =

1−ρϕ′(MG v̄
v
)

r ′(v̄)− r ′(MG v̄
v
)
. (75)

By definition, we then have for all (ρ,σ) with ρ < ρ̂ and σ < σ̂(ρ) that

c′
G v̄

v
(v̄) ≤ 1, (76)

and hence, Proposition 8 implies that G v̄
v

is the buyer’s equilibrium distribution. By part (i) of
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Proposition 3, because cG v̄
v
(v) is minimized at v, the buyer’s equilibrium utility is thus

UB =

∫

V

cG v̄
v
(v) dK v̄

v
(v)− C(G v̄

v
)−min

v∈V
cG v̄

v
(v) (77)

= ρ

�∫

V

ϕ′(MG v̄
v
)v dK v̄

v
(v)−ϕ(MG v̄

v
)−ϕ(v)

�

(78)

−σ

�∫

V

r ′(MG v̄
v
)v dK v̄

v
(v)− r(MG v̄

v
)− r(v)

�

(79)

−σr(v) (80)

= ρ
�

ϕ′(MG v̄
v
)MG v̄

v
−ϕ(MG v̄

v
)−ϕ(v)
�

−σ
�

r ′(MG v̄
v
)MG v̄

v
− r(MG v̄

v
)
�

. (81)

Because ϕ(v) = 0 by (74), strict convexity of ϕ and r implies that the square brackets are strictly

positive. Thus, the buyer’s utility is strictly increasing in ρ and strictly decreasing in σ. QED
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