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Abstract

We consider a dynamic screening model with serially independent types where the agent

is short-term liquidity constrained. We model a liquidity constraint as a hard constraint that

forces the agent to renege whenever he would suffer a loss from fulfilling the contract terms

in a given period. In particular, the violation of a liquidity constraint is a verifiable event

that future contract terms can condition on. This verifiability leads to less stringent truth-

telling constraints than those considered in the existing literature. We show that the weaker

constraints do not affect optimal contracting, however. Moreover, we develop a novel method

to study private values settings with continuous types and show that a regularity condition

that has analogues in the literature on multi-dimensional screening ensures that the optimal

contract is deterministic.
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1 Introduction

A recent literature studies the role of short-term liquidity constraints in dynamic screening models

where a procurer (the principal) procures goods or services over multiple periods from a supplier

(the agent) whose costs evolve dynamically over time and are the supplier’s private informa-

tion (e.g. Krishna et al., 2013, Mirrokni et al., 2020, Krasikov and Lamba, 2021, Ashlagi et al.,

2023). A liquidity constraint is a hard (physical) constraint that captures the fact that, in prac-

tice, suppliers are often forced to renege on the contract because they are unable to raise cash for

paying short-term bills.1 By contrast, the classical literature on dynamic screening/mechanism

design (e.g., Baron and Besanko, 1984, Battaglini, 2005, Pavan et al., 2014, Esö and Szentes,

2017) neglects such concerns, effectively assuming that the supplier has sufficiently deep pockets

to overcome short-term liquidity needs. In this case, optimal contracts exploit this feature and,

in fact, impose short-term losses on the supplier. These contracts are thus no longer feasible in

situations when the supplier is unable to cope with short-term liquidity needs.

We make two contributions to the literature. First, existing literature focusses on direct revela-

tion mechanisms and imposes liquidity constraints by requiring the mechanism to ensure that the

agent gets non-negative utility on the path, that is, when the agent reveals his private information

truthfully.2 This approach is, however, difficult to interpret because it does not ensure that the

agent obtains a non-negative periodic utility off the path, that is, when the agent misreports. In

fact, the mechanisms that this literature identifies as optimal typically exhibit a binding liquidity

constraint for some cost type θ so that the liquidity constraint is violated for any cost type θ ′ > θ

that misreports to be type θ ′.3

To clarify these issues, we take serious the idea of the literature that a liquidity constraint is

a hard constraint that kicks in whenever the agent would suffer a financial loss when fulfilling

the contract terms in the current period. In other words, when illiquid, the agent has no choice

1According to one study, about 80% percent of failing small business in the US attribute their bankruptcy to cash
flow problems. https://www.visualcapitalist.com/why-do-businesses-fail/

2Krishna et al. (2013) call these liquidity constraints “non-negative cash flows” and claim in footnote 10 that in-
centive compatibility and on-path liquidity constraints imply that liquidity constraints are never violated off-path and
can therefore be neglected. Krasikov and Lamba (2021) refer to the agent’s liquidity constraints as “cash-strapped”
and while they state in footnote 22 that “Even if the agent may have misreported in the past, the principal delivers a
non-negative stage utility to him if he is truthful today” (emphasis added), they however leave unspecified the payoff
of an agent who is not truthful today. Ashlagi et al. (2023) impose ex post individual rationality, requiring that the
agent gets non-negative life-time utility along the (truth-telling) equilibrium path. They note that, in their context,
ex post individual rationality is equivalent to requiring that the agent obtains a non-negative per-period utility (along
the equilibrium path). However, no restrictions are imposed on life-time or periodic utility off the path.

3Hence, this observation is in conflict with footnote 10 in Krishna et al. (2013) claiming that incentive compatibility
and on-path liquidity constraints imply that liquidity constraints are satisfied off-path.
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but to renege on the contract. Taking this idea to its logical conclusion implies that a violation of

liquidity constraints is inherently verifiable.

Moreover, since the agent is forced to renege only because his pockets are empty, we assume

that he obtains a payoff equal to (his outside option of) zero.4 This assumption also captures that

the agent as a firm is protected by limited liability. However, as the agent’s liquidity is verifiable,

the future terms of the contract can be conditioned on whether the current liquidity constraint is

violated or not.

Micro-founding liquidity constraints in this way allows us to deduce the contractual feasibility

constraints from the underlying physical environment. In particular, the resulting dynamic in-

centive compatibility constraints account for the possibility to break the liquidity constraint after

a deviation from truth-telling. Moreover, since violations of liquidity constraints are verifiable,

certain deviations are detectable, and this enlarges the contractual design choices to dissuade

them. Specifically, we show that an optimal contract has to satisfy only uni-directional incentive

constraints that only prevent an agent from overstating her costs. The reason is that under-

stating one’s cost results in a verifiable violation of the liquidity constraint, thus revealing a lie.

Even though our uni-directional incentive constraints are weaker than the feasibility constraints

posited by the existing literature, a key insight of our paper is that optimal contracts do not, how-

ever, exploit the additional slack thus gained. In this sense, our approach validates the literature’s

approach to impose cash constraints only on but not off the equilibrium path.5

Our observation that a liquidity constraint affects the agent’s incentive constraint has a coun-

terpart in the literature on mechanism design with quitting or withdrawal rights. In particu-

lar, that literature points out that incentive constraints are affected by such rights in that they

have to account for the “double deviation” that an agent misreports and subsequently quits (e.g.

Matthews and Postlewaite, 1989; Forges, 1999; Compte and Jehiel, 2007, 2009, Krähmer and

Strausz, 2015, Bergemann et al., 2020). We stress, however, that despite this similarity, liquidity

constraints conceptually differ from quitting or withdrawal rights. This is so because with a quit-

ting or withdrawal right, the agent can strategically decide whether to sustain a loss ex post or

4Thus, we abstract from potential non-monetary costs of reneging on the contractual terms, for example repu-
tational costs. As we point out in more detail in Footnote 8, the presence of such costs would possibly allow the
principal to induce violations of the liquidity constraint as a screening instrument.

5Because our micro foundation implies that an optimal contract has to satisfy only uni-directional incentive con-
straints, our study of dynamic setting with bankruptcy constraints links to the literature that considers static settings
in which such uni-directional incentive constraints exist for exogenous reasons (e.g., Moore, 1984, and Celik, 2006,
Krähmer and Strausz, 2024). In line with our finding, this literature shows that, in static settings, these weaker
incentive constraints do not give rise to different predictions in settings with private values or, more generally, when
the aggregate surplus is monotone in the allocation.
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not. By contrast, and as mentioned above, the agent cannot do so in case of a liquidity constraint.

Hence, the consideration of quitting or withdrawal rights introduces a moral hazard problem,

which does not arise in the case of liquidity constraints. We refer to Krishna et al. (2013, p106)

for a more extensive discussion of this distinction.

Our second contribution is to extend the existing literature’s analysis of liquidity constraints

with two agent types to settings with continuous types. This extension is not straightforward, be-

cause with liquidity constraints, the principal’s ex ante payoff is a non-linear and non-monotone

function of the agent’s (future) information rents. Hence, contrary to dynamic screening without

liquidity constraints, the problem cannot be reduced to maximizing a virtual surplus represen-

tation where allocations are additively separable by type. Consequently, the problem becomes

difficult to solve with standard techniques when there are more than two types. For this reason,

we develop a novel solution method.

The basic idea behind this method is based on the observation that every dynamic contract

induces a continuation value for the agent which, from the principal’s perspective, is a random

variable, as it depends on the agent’s privately known type. A standard argument from dynamic

programming implies that the principal’s continuation profit is concave in the agent’s continuation

value. This observation allows us to rank contracts in terms of second order stochastic dominance

of the induced continuation value. As a result, we can identify an optimal contract as a contract

that, among the set of feasible contracts, displays minimal dispersion in the second order sense.

We show that, under a regularity condition, an optimal contract has a simple, deterministic cutoff

structure where cost types below a cutoff produce the good and types above the cutoff do not. The

regularity condition differs from the more familiar monotone virtual surplus kind of conditions,

and also appears in the (static) multi-dimensional screening literature (e.g. Manelli and Vincent

(2006)). The connection is that, as in this literature, we write the principal’s optimization problem

in terms of the agent’s (continuation) value rather than the allocation rule.

2 The model

A principal (the buyer, she) and an agent (the seller, he) interact over two periods τ = 1,2.6

In each period, the principal seeks to procure one good from the agent. In period τ, the terms

of trade are the probability of trade xτ and a transfer tτ from the principal to the agent.7 The

6At the end of Section 4, we show that our analysis and results extend to a setting with infinitely many periods.
7As is standard, we interpret tτ as the expected payment t(0)τ (1−xτ)+ t(1)τ xτ, where t(0) (resp. t(1)) is the payment

when trade does not (resp. does) occur. Alternatively, for a divisible good, we may interpret xτ as the share of the
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principal’s valuation for the good is vτ, and the agent’s cost to produce the good is θτ. While vτ is

commonly known, θτ, the agent’s cost type in period τ, is privately known to the agent in period

τ, and it is commonly known that θτ is distributed with cdf Fτ with support Θτ ≡ [θτ, θ̄τ] and

differentiable pdf fτ. We assume that θ1 and θ2 are stochastically independent. Moreover, we

assume that production is only efficient when costs are low enough, i.e. vτ ∈ (θτ, θ̄τ].

The parties have time-separable quasi-linear utilities. That is, under the terms of trade xτ, tτ

the principal’s utility in period τ is vτxτ− tτ, and the agent’s utility is tτ−θτxτ. A party’s overall

utility is the sum over the per-period utilities.

The key feature of our paper is that the agent is short-term liquidity constrained. This means

that the agent cannot honor the contract in a given period if this would require him to make a loss

in this period. We say that the agent is “illiquid” in this case and, as explained in the introduction,

the fact that the liquidity constraint is hard implies that being illiquid is a verifiable event. In

particular, future contract terms can condition on past liquidity states. Moreover, we assume that

when the agent is illiquid, both the agent and the principal receive their reservation utility of

zero.8

The timing is as follows:

1. At the outset, the principal commits to a long-term contract which specifies the terms of

trade over the two periods. If the agent rejects the contract, both parties receive their

reservation utility of 0 and the game ends.

2. If the agent accepts, then in period 1, he privately learns θ1. If t1 − θ1 x1 ≥ 0, the agent is

liquid and the terms of trade x1, t1 are implemented. If t1 − θ1 x1 < 0, the agent is illiquid

and both parties receive 0.9

3. In period 2, the agent privately learns θ2. If t2−θ2 x2 ≥ 0, the agent is liquid and the terms

of trade x2, t2 are implemented. If t2 − θ2 x2 < 0, the agent is illiquid and both parties

receive 0.

good traded.
8Thus, we assume that the agent is protected by limited liability and cannot be penalized to a level below her

outside option when becoming illiquid. This simply reflects that being illiquid means that the agent has empty
pockets. In practice, reneging on a contract often comes with additional costs such as reputational costs or the
opportunity costs entailed by legal proceedings. To keep the analysis simple, we abstract from the presence of such
costs because they would introduce the possibility to “money burning” by way of inducing illiquidity as a screening
instrument.

9Related to footnote 7, if x1 ∈ (0,1), the agent is illiquid if t(0) < 0 and the mechanism does not prescribe trade,
as well as if t(1) − θ1 < 0 and the mechanism does prescribe trade.
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Benchmarks: It is useful to contrast our setting to various benchmarks. In the absence of a liquidity

constraint, the model corresponds to a traditional dynamic screening model where the agent has

an outside option of zero at the contracting stage. If contracting takes place under symmetric

information, then the principal can implement the first-best by “selling the firm” to the agent at

a price equal to the expected first-best surplus (see, e.g., Harris and Raviv, 1979). The agent

will therefore make a loss for high cost realizations. This outcome is therefore not feasible with

liquidity constraints.

If contracting takes place after the agent observes θ1, then an optimal mechanism features a

distorted allocation in the first period but implements the first-best in the second period because

cost types are independent (see, e.g., Baron and Besanko, 1984). Again, for high cost realizations,

the liquidity constraint will be violated in some period. By backloading payments to the agent

from the first to the second period, however, the agent’s second period payoff can be made non-

negative for all θ2 so that second period liquidity constraints are automatically satisfied. Since

these constraints effectively correspond to second period participation constraints, the same out-

come can be implemented even if the agent can walk away from the contract after observing

θ2.

Note that in our setting, it is immaterial whether contracting takes place after or before the

agent observes θ1 because the liquidity constraint ensures that the participation constraint is satis-

fied for all types θ1 even if contracting takes place under symmetric information (see Sappington,

1983). Finally, if the principal can offer only one-period spot contracts, then he will offer in each

period the static one-period second best mechanism, which is a posted price mechanism (see Riley

and Zeckhauser, 1983).

Example: To illustrate our analysis, we use the uniform example, where θ1 and θ2 are both uni-

formly distributed over the interval [0, 1], and v1 = v2 = θ̄ = 1. For this example, trade is efficient

for all types and the per-period first-best surplus equals SFB = SFB
1 = SFB

2 =
∫ 1

0
1− θ dθ = 1/2,

yielding an aggregate surplus of SFB
1 + SFB

2 = 1. In the static second best, the optimal mechanism

is a posted price of 1/2, yielding the principal a per-period profit of ΠSB ≡ (1− 1/2) ∗ 1/2 = 1/4

and the agent a per-period second best utility of USB ≡
∫ 1/2

0
1/2 − θ dθ = 1/8. Implementing

a posted price of 1/2 for each of the two periods, yields an overall profit of 2ΠSB = 1/2 to the

principal and an overall utility of 2USB = 1/4 to the agent, resulting in aggregate surplus of 3/4.

In the benchmark case in which there is an interim participation constraint in period 1 but

no liquidity constraint, the optimal mechanism implements a posted price of p = 1/2 for the first

period, and extracts the whole first-best surplus in the second period. This yields an overall profit
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of ΠSB + SFB = 3/4 to the principal, an overall utility of USB = 1/8 to the agent, resulting in

aggregate surplus of 7/8. □

3 The principal’s problem

The principal’s objective is to design a contract to maximize her profits. Because the principal

has full commitment, the revelation principle applies, implying that an optimal contract is in the

class of direct mechanisms where, on the equilibrium path, agent reports his type truthfully in

every period (Myerson, 1986). Moreover, because the agent’s liquidity in period 1 is verifiable,

a mechanism can condition the terms of trade in period 2 on whether the agent was illiquid

in period 1 or not. Without loss, we can therefore restrict attention to contracts of the form

(x1, t1, x L
2 , t L

2 , x I
2, t I

2), where

(x1, t1) : [θ 1, θ̄1]→ [0,1]×R, (xℓ2, tℓ2) : [θ 1, θ̄1]× [θ 2, θ̄2]→ [0,1]×R, (1)

where ℓ ∈ {I , L} indicates whether the agent was illiquid (ℓ= I) or liquid (ℓ= L) in period 1.

To state the incentive compatibility constraints, we denote for ℓ ∈ {I , L} the agent’s expected

period 2 utility from a report θ̂1, conditional on truthfully reporting in period 2, by

Uℓ(θ̂1) =

∫ θ̄2

θ2

max{0, tℓ2(θ̂1,θ2)− θ2 xℓ2(θ̂1,θ2)} dF2(θ2). (2)

Moreover, let

ΘL
1 = {θ1 | t1(θ1)− θ1 x1(θ1)≥ 0} (3)

be the set of period 1 types who are liquid in period 1 under a given mechanism.

Definition 1 A contract (x1, t1, x L
2 , t L

2 , x I
2, t I

2) is feasible if:

(i) It is incentive compatible in period 2, that is, for ℓ ∈ {I , L}:10

max{0, tℓ2(θ1,θ2)− θ2 xℓ2(θ1,θ2)} ≥max{0, tℓ2(θ1, θ̂2)− θ2 xℓ2(θ1, θ̂2)} ∀θ1,θ2, θ̂2. (4)

10The revelation principle for dynamic games requires truthful reporting in period 2 only after a truthful report in
period 1 (see Myerson, 1986). In our context, where types are independent, the support of period 2 types is “non-
shifting”, that is, is independent of the period 1 type. It then follows with standard arguments that if truth-telling in
period 2 is optimal for the agent after telling the truth in period 1, then it is so after any report in period 1.
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(ii) It is incentive compatible in period 1, that is:

⋄ For all θ1 ∈ ΘL
1 , we have:

t1(θ1)− θ1 x1(θ1) + U L(θ1) ≥ t1(θ̂1)− θ1 x1(θ̂1) + U L(θ̂1) ∀θ̂1 : t1(θ̂1)− θ1 x1(θ̂1)≥ 0, (5)

t1(θ1)− θ1 x1(θ1) + U L(θ1) ≥ U I(θ̂1) ∀θ̂1 : t1(θ̂1)− θ1 x1(θ̂1)< 0, (6)

⋄ For all θ1 /∈ ΘL
1 , we have:

U I(θ1) ≥ t1(θ̂1)− θ1 x1(θ̂1) + U L(θ̂1) ∀θ̂1 : t1(θ̂1)− θ1 x1(θ̂1)≥ 0, (7)

U I(θ1) ≥ U I(θ̂1) ∀θ̂1 : t1(θ̂1)− θ1 x1(θ̂1)< 0. (8)

Part (i) of the definition captures the truth-telling constraints for the agent in period 2, explic-

itly taking into account the agent’s liquidity in period 2 in period 2 occurs whenever the terms of

trade would impose a loss on the agent. Similarly, part (ii) describes the truth-telling constraints

for the agent in period 1. This requires a distinction between four cases, depending on how both

truth-telling and lying affects the agent’s liquidity in period 1.

The principal’s problem is thus to select a feasible contract that maximizes her profits

∫

ΘL
1

�

v1 x1(θ1)− t1(θ1) +

∫

Θ
L,L
2 (θ1)

v2 x L
2 (θ1,θ2)− t L

2(θ1,θ2) dF2(θ2)

�

dF1(θ1) (9)

+

∫

Θ1\ΘL
1

�

0+

∫

Θ
I ,L
2 (θ1)

v2 x I
2(θ1,θ2)− t I

2(θ1,θ2) dF2(θ2)

�

dF1(θ1), (10)

where

Θℓ,L2 (θ1)≡ {θ2 ∈ Θ2 | tℓ2(θ1,θ2)− θ2 xℓ2(θ1,θ2)≥ 0} (11)

denotes the set of types θ2 who are liquid in period 2 given their liquidity state ℓ ∈ {L, I} in period

1.

To solve the principal’s problem, we first show that it is without loss to focus on contracts with

the property that the agent is liquid on the equilibrium path where the agent tells the truth.

The intuition is simply that the outcome when the agent is illiquid is equivalent to not trading

the good (x = 0) and making no payments (t = 0), which keeps the agent just liquid. Thus,

the outcome of a mechanism γ where the agent becomes illiquid on the equilibrium path can

be replicated by the mechanism which differs from γ only in that it specifies no trade and zero
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payments for any contingency where the agent becomes illiquid on path under γ.

Second, it is without loss to focus on mechanisms in which the agent exactly breaks even in the

first period, and backloads any potential profit for the agent in that it accrues only in the second

period.11 The reason is that if the agent were to make a profit in the first period, the principal

could deduct it from the agent’s first period 1 payments and pay it out in period 2 instead. This

would not affect the principal’s profit and would maintain truth-telling incentives for which only

total payments matter.

We summarize these considerations in the next lemma.

Lemma 1 For any feasible contract there is a payoff-equivalent feasible contract (x1, t1, x L
2 , t L

2 , x I
2, t I

2)

with the following properties:

• The agent exactly breaks even, and is never illiquid in period 1 (on path):

t1(θ1)− θ1 x1(θ1) = 0 for all θ1. (12)

• The agent is never illiquid in period 2 (on path):

t L
2(θ1,θ2)− θ2 x L

2 (θ1,θ2)≥ 0 for all θ1,θ2. (13)

• After the off-path event that the agent becomes illiquid in period 1, the relationship is terminated:

x I
2(θ1,θ2) = t I

2(θ1,θ2) = 0 for all θ1,θ2. (14)

Lemma 1 implies that we can find an optimal contract in the class of feasible contracts that

satisfy (12)-(14). Since properties (12) and (14) pin down t1, x I
2, and t I

2, we are actually left to

determine only the triple (x1, x L
2 , t L

2). We therefore introduce the following definition.

Definition 2 A triple (x1, x2, t2) with x1 : Θ1→ [0,1], x2 : Θ1×Θ2→ [0, 1], and t1 : Θ1×Θ2→ R

is called a backloaded contract if

L2 : t2(θ1,θ2)− θ2 x2(θ1,θ2)≥ 0 ∀θ1,θ2. (15)

A backloaded contract uniquely induces a contract (x1, t1, x L
2 , t L

2 , x I
2, t I

2) with the properties (12)-

(14) by setting t1 = θ1 x1, x L
2 = x2, t L

2 = t2, and x I
2 = t I

2 = 0. For a backloaded contract, we

11This argument also appears in Ashlagi et al. (2023).
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write

U(θ1) =

∫ θ̄2

θ2

t2(θ1,θ2)− θ2 x2(θ1,θ2) dF2(θ2) (16)

for the agent’s expected period 2 utility. The next lemma characterizes when a backloaded con-

tract is feasible.

Lemma 2 A backloaded contract (x1, x2, t2) induces a feasible contract (x1, t1, x L
2 , t L

2 , x I
2, t I

2) if and

only if

IC2 : t2(θ1,θ2)− θ2 x2(θ1,θ2)≥ t2(θ1, θ̂2)− θ2 x2(θ1, θ̂2) ∀θ1,θ2, θ̂2 (17)

IC1 : U(θ1)≥ (θ̂1 − θ1)x1(θ̂1) + U(θ̂1) ∀θ1 < θ̂1 (18)

IC0
1 : U(θ1)≥ U(θ̂1) ∀θ̂1 ∈ Θ0

1,∀θ1 ∈ Θ1, (19)

where Θ0
1 = {θ ∈ Θ1|x1(θ ) = 0} is the set of types who do not trade in period 1.

Constraint IC2 corresponds to the period 2 truth-telling constraints (4). The more interesting

constraint is IC1 which corresponds to the period 1 truth-telling constraints.12

The novelty is that IC1 only requires that the agent does not report a higher type than his true

type, but not that he does not report a lower type. The reason for this asymmetry is that if the

agent reported lower costs in the first period, then, because any cost type breaks even in period 1,

the agent would become illiquid after such a lie. But, a violation of the liquidity constraint does

not occur on path and is verifiable. Consequently, such a lie would be detected, and under a back-

loaded mechanism, the relationship would be terminated. This prospect is enough to dissuade

the agent from understating his costs, and extra incentives are not needed to induce truth-telling.

A subtlety is however that the agent can become illiquid only when some production takes

place. As a result, the previous reasoning applies only to types θ̂1, who actually produce in period

1. The constraint IC0
1 takes care of this by explicitly requiring that for types θ̂1 with x1(θ̂1) = 0, the

truth-telling constraints have to hold in both directions, as the verifiability of the agent’s liquidity

has no bite in this case.

We can now re-state the principal’s problem as selecting an optimal backloaded contract.

Under a backloaded contract, the principal’s period 1 profit equals v1 x1(θ1) − θ1 x1(θ1) for all

12To see that IC1 replaces the period 1 truth-telling constraints (5)-(8) note that because under a backloaded
contract the agent is never illiquid in period 1 for any θ1, constraints (6), (7) and (8) are all redundant, and the only
relevant constraint is (5), which now has to hold for all θ1, leading to IC1.

10



θ1, because the agent breaks even in period 1. Moreover, her profit in period 2 is equal to

v2 x2(θ1,θ2) − t2(θ1,θ2) for all (θ1,θ2), because the agent is never illiquid in period 2. Thus,

the principal’s problem is

P : sup
x1,x2,t2

∫ θ̄1

θ1

∫ θ̄2

θ2

v1 x1(θ1)− θ1 x1(θ1) + v2 x2(θ1,θ2)− t2(θ1,θ2) dF2(θ2) dF1(θ1)

s.t. IC2, L2, IC1, IC0
1

where IC2, IC1, and IC0
1 are the feasibility constraints, and L2 ensures that the contract is a

backloaded contract. Note that the constraint IC0
1 leads to the technical complication that the

feasibility set is not closed.13. For this reason, the principal’s objective does not necessarily take

on a maximum. We will address this issue explicitly.

Intuitively, for given θ1, the principal faces the standard (intra-temporal) rent-efficiency trade-

off in period 2, because she has to grant low cost types an information rent for truth-telling due

to the presence of the liquidity constraint L2. Moreover, because a backloaded contract uses the

expected period 2 information rent for incentivizing low cost types in period 1 to reveal the truth,

the principal also faces an inter-temporal trade-off between maximizing profits in period 1 and 2.

Before solving problem P, we note that the liquidity constraint L2 is formally equivalent to a

period 2 participation constraint. Hence, problem P corresponds to a two-period dynamic mech-

anism design problem with second period participation constraints, but with the novelty that the

first period incentive constraints IC1 are asymmetric in that they only require lower types not to

mimic higher types, and the constraints IC0
1 only apply to reports that imply no production. To the

extent that those modified incentive constraints result from the first period liquidity constraint,

the latter is the key constraint.

More formally, the incentive constraints IC1 and IC0
1 are precisely what distinguishes our

problem from the kind of problem that arises in the literature that imposes liquidity constraints

only on the path (see footnote 2). In particular, this literature imposes the period 2 liquidity

constraint (4), but different from us, imposes a period 1 liquidity constraint t1(θ1)−θ1 x1(θ1)≥ 0

for all θ1, and requires the period 1 incentive compatibility constraint (5) to hold for all θ1, θ̂1,

13To see this, let Θ1 = [0, 1] and consider sequence of contracts with (xn
1 , Un

1 ) given by

xn
1(θ1) =
§

1/n i f θ1 ∈ [0, 1/2)
1 i f θ1 ∈ [1/2,1] , Un

1 (θ1) = 1− θ1. (20)

Note that for every n, Θ0
1 = ; so that IC0

1 is redundant, and it is easy to check that IC1 is satisfied. Thus, every
element in the sequence is feasible. However, the limit contract, as n → ∞, is not feasible, because in the limit,
Θ0

1 = [0, 1/2) and so IC0
1 is violated for any pair (θ1, θ̂1) with θ̂1 <max{θ1, 1/2}

11



and does not condition the agent’s continuation value on the agent’s liquidity in period 1, and

thus does not consider the constraints (6) to (8). Like in our case, it is then without loss to focus

on backloaded contracts, and the resulting problem for the principal differs from problem P only

in that constraint IC0
1 is missing and IC1 is replaced by its bi-directional counterpart that requires

IC1 to hold for all θ1, θ̂1.

4 Solution to the principal’s problem

We solve the principal’s problem by the well-known technique in dynamic programming to reduce

the dynamic problem P to a sequence of static problems (Spear and Srivastava, 1987, Thomas

and Worrall, 1990). Consequently, we proceed in two steps. In the first step, we solve for optimal

period 2 terms of trade (xU
2 , tU

2 ) that promise the agent a certain exogenously given expected

period 2 utility U . In the second step, we then solve for an optimal period 1 allocation x1 and an

optimal continuation value U taking as given optimal period 2 terms of trade (xU
2 , tU

2 ) from step

1 that supply the agent with U .

Step 1: Optimal period 2 terms of trade

Note first that the principal can promise any positive utility U ≥ 0. Indeed, by L2, the principal

cannot promise a negative utility while she can offer any utility U ≥ 0 by, for example, offering

the terms of trade (x2, t2) = (0, U). Thus, the set of feasible promised utilities is {U | U ≥ 0}.

For a given report θ1, the principal’s problem to optimally promise U ≥ 0 is

P2 : Π(U)≡max
x2,t2

∫ θ̄2

θ2

v2 x2(θ1,θ2)− t2(θ1,θ2) dF2(θ2) s.t (21)

IC2 : t2(θ1,θ2)− θ2 x2(θ1,θ2)≥ t2(θ1, θ̂2)− θ2 x2(θ1, θ̂2) ∀θ2, θ̂2 (22)

L2 : t2(θ1,θ2)− θ2 x2(θ1,θ2)≥ 0 ∀θ2 (23)

PK :

∫ θ̄2

θ2

t2(θ1,θ2)− θ2 x2(θ1,θ2) dF2(θ2) = U . (24)

While the constraints IC2 and L2 carry over from problem P, the constraint PK ensures that the

agent receives his promised utility U .

Problem P2 corresponds to a static monopoly problem where the agent has an interim outside

option of 0 after learning θ2 (as reflected by L2), and an ex-ante outside option of U before

12



learning θ2 (as reflected by PK). The solution is well-known from Samuelson (1984); for details

see our Remark 1 below. We state the features that will be key for our purposes in the next lemma.

In order to avoid uninteresting case distinctions, we impose the following mild condition.14

Assumption 1: The second best solution (xSB
2 , tSB

2 ) to the relaxed version of P2 where PK is

missing is unique.

Given Assumption 1, the utilities in the second best solution for both the principal and the

agent are unique and we denote them, respectively, by ΠSB
2 and USB

2 . Moreover, we denote the

surplus associated with the period 2 first-best allocation x FB
2 (θ1,θ2)≡ 1[θ2,min{v2,θ̄2}](θ2) by15

SFB
2 =

∫ min{v2,θ̄2}

θ2

v2 − θ2 dF2. (26)

Clearly, USB
2 ∈ (0, SFB

2 ).

Lemma 3 The value of problem P2 as a function of U,Π(U), is concave in U withΠ(0) = Π(SFB
2 ) = 0

and attains a unique maximum ΠSB
2 at USB

2 , that is, Π(USB
2 ) = Π

SB
2 .

The concavity of the value follows from a standard mixing argument. Specifically, given two

promises U ′ and U ′′, the principal can promise the agent the convex mixture Ū = αU ′+(1−α)U ′′

by appropriately randomizing between the optimal terms of trade for U ′ and U ′′. This would yield

the principal a profit αΠ(U ′2) + (1− α)Π(U
′′
2 ), but by re-optimizing, the principal can promise Ū

at a higher profit, implying that Π is concave.

To see why Π(0) = 0, note that IC2 and L2 imply that the only way to provide the agent with

expected utility U = 0 is through no trade (x2 = t2 = 0), resulting in zero profits for the principal.

To see that Π(SFB
2 ) = 0, observe that the principal’s profit Π is the total surplus generated minus

the utility U supplied to the agent. Hence, if the principal promises the entire first-best surplus

to the agent, U = SFB
2 , she cannot make a strictly positive profit. But she can at least guarantee

herself zero profits by selecting terms of trade that generate the first-best surplus. Therefore,

14It is well-known (e.g. Riley and Zeckhauser, 1983) that in the absence of PK , the solution to P2 can be imple-
mented by a posted price p given by

p ∈ arg max
p̃

∫ p̃

θ2

v2 − θ2 −
F2(θ2)
f2(θ2)

dF2(θ2). (25)

Notice that the right hand side is generically a singleton in the sense that whenever it is not a singleton, a slight
perturbation of F2(θ2)

f2(θ2)
would remove all but one solution. Hence, Assumption 1 is mild in that it holds generically.

15Given a set A, the indicator function 1A(a) is 1 if a ∈ A and 0 otherwise.

13



Π(SFB
2 ) = 0. Finally, that the principal’s profit is uniquely maximized at USB follows directly from

the definition of the second best and Assumption 1.

Remark 1 (Period 2 implementation) We briefly discuss how the period 2 contract can be imple-

mented. If the principal promises more than the second best surplus, U ≥ SFB
2 , then it follows from

the proof of Lemma 3 that the optimal contract displays the first-best allocation x FB
2 (θ1,θ2). The

intuition is that when guaranteeing the agent a utility exceeding the first-best level SFB
2 , the prin-

cipal does not face the standard rent-efficiency trade-off anymore. Now, if the principal promises

exactly U = SFB
2 , this can be indirectly implemented by an offer from the principal to procure the

good at a price of v2. If the principal promises strictly more, U > SFB
2 , then an optimal contract

can be indirectly implemented by a two-part tariff. In particular, the principal makes an uncondi-

tional payment U − SFB
2 and offers to procure the good at a price of v2. This two-part tariff yields

her an expected profit Π(U) = SFB
2 − U .

If, on the other hand, U < SFB
2 , it follows from Samuelson (1984) that an optimal trading

probability is of the form

x2(θ1,θ2) =















1 i f θ2 ∈ [0,θ ′2]

ξ i f θ2 ∈ (θ ′2,θ ′′2 ]

0 else

(27)

for some ξ ∈ [0, 1], θ ≤ θ ′2 ≤ θ
′′
2 < v2 which all depend on U . If ξ = 0, the optimal contract

can be implemented by an offer from the principal to procure the good at price θ ′2. If ξ > 0, the

optimal contract can be implemented by a menu of three options for the agent: to not produce

the good at a price of 0; to produce a “fraction” ξ of the good for a price of ξθ ′2,16 or to produce

the good at price θ ′′2 .

Whether ξ is strictly positive or not, depends on the distribution F2 and on the size of U . For

the special case that the hazard rate F2/ f2 is increasing, we have that ξ = 0 for all U so that the

optimal contract can be implemented with a posted price.17

Example: For our uniform example, the hazard rate F2(θ2)/ f2(θ2) = θ2 is increasing so that, as

noted in Remark 1, a posted price in period 2 is optimal. In particular, the optimal contract for

U ∈ [0, SFB
2 ] = [0, 1/2] corresponds to a posted price p2 which maximizes p2(v − p2) subject to

the promise keeping constraint
∫ p2

0
p2 − θ dθ = U . This constraint simplifies to p2

2/2 = U and

16For an indivisible good the contract randomizes between trade and no trade and the agent is payed θ ′2 if trade is
the outcome.

17If F2/ f2 is increasing the posted price is unique and Assumption 1 holds.
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therefore pins down p2(U) =
p

2U . The resulting profit is Π(U) = p2(v− p2) =
p

2U(1−
p

2U) =
p

2U − 2U . Moreover, for U > 1/2, the optimal contract is efficient and corresponds to a posted

price p2 that satisfies p2−
∫ 1

0
θ dθ = U , that is, p2 = U+1/2. Moreover, we have Π(U) = 1/2−U .

Taken together, we thus have:

Π(U) =

( p
2U − 2U i f U ≤ 1/2;

1/2− U i f U > 1/2.
(28)

Note that Π(U) is not only continuous but also differentiable at U = 1/2.

Step 2: Optimal period 1 terms of trade

Step 1 allow us to re-write the principal’s problem P as a static maximization problem over the

period 1 terms of trade x1 and the agent’s promised utility U . More specifically, any combination

(x1(θ1), U(θ1)) with U(θ1) ≥ 0 corresponds to a backloaded contract (x1(θ1), x2(θ1, ·), t2(θ1, ·))

where (x2(θ1, ·), t2(θ1, ·)) is the solution to P2 with U = U(θ1). We refer to (x1, U) as a reduced

backloaded contract (and simply as backloaded contract if there is no risk of confusion). Clearly,

only contracts corresponding to reduced backloaded contracts can be optimal.

Recall that under a backloaded contract, the agent breaks even in period 1, that is, t1(θ1) =

θ1 x1(θ1). Consequently, the principal receives the profit v1 x1(θ1)− θ1 x1(θ1) in period 1 and the

profit Π(U(θ1)) in period 2. Suppressing the time index for period 1, we can therefore rewrite

the principal’s problem as

P1 : sup
x ,U

∫ θ̄

θ

[v − θ]x(θ ) +Π(U(θ )) dF(θ ) s.t (29)

IR : U(θ )≥ 0 ∀θ (30)

IC : U(θ )≥ (θ̂ − θ )x(θ̂ ) + U(θ̂ ) ∀θ < θ̂ (31)

IC0 : U(θ )≥ U(θ̂ ) ∀θ̂ ∈ Θ0,∀θ ∈ Θ (32)

UG : x(θ ) ∈ [0,1] ∀θ . (33)

The constraint IR is simply the feasibility constraint that the agent’s expected utility cannot be

negative, and the constraints IC and IC0 are inherited from the original formulation of P. To deal

with the problem that the feasibility set is not closed, we solve a relaxed version where we drop
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IC0 leading to the following problem:

P ′1 : max
x ,U

∫ θ̄

θ

[v − θ]x(θ ) +Π(U(θ )) dF(θ ) s.t IR, IC , UG. (34)

Problem P ′1 looks similar to a standard monopoly problem where U(θ ) is agent type θ ’s informa-

tion rent, and constraint IR corresponds to a standard (interim) participation constraint. There

are, however, two important differences.

First, unlike in the static monopoly problem with transferable utility, the principal’s objective

is not linear in the agent’s information rent. This is due to the period 2 liquidity constraint which

results in a rent-efficiency trade-off in period 2. In fact, if the principal did not face a liquidity

constraint in period 2, her objective would be linear in the information rent because she would

then optimally implement the first-best allocation in period 2 and could award the agent any

(possibly negative) level of rent through an appropriate transfer.

To shed more light on the principal’s costs of providing incentives, recall that Π is single-

peaked with a maximum at USB. Therefore, if the period 1 type were publicly known, the principal

would maximize the objective by picking an efficient x(θ ) and setting U(θ ) equal to the second

best information rent USB. But since the period 1 type θ is private information, the principal

has to create a spread in the information rents and award a higher information rent to low cost

than to high cost types to induce the former to report truthfully. As a result, the cost of providing

incentives through promising a certain information rent U in period 2 is not monotone in U . For

example, ”punishing” the agent with a zero information rent in period 2 is extremely costly, since

Π(0) = 0 means that the principal has to sacrifice the entire surplus in period 2. Likewise, to

reward the agent with a rent higher than USB, then because Π is maximal at USB, the principal

has to give the agent a surplus share that exceeds the second best share of the surplus in period

2.

Second, the incentive compatibility constraints IC are uni-directional, only requiring that the

agent does not report a less efficient type. In contrast to the setting with bi-directional incen-

tive constraints, the uni-directional constraints prevent us from employing familiar solution tech-

niques that are based on the characterization of incentive compatibility in terms of monotonicity

of the trading probability and revenue equivalence. In fact, it is easy to see that IC does not

even imply that x(θ ) is monotone.18 To address this issue, the next lemma provides necessary

18Analyzing a screening problem with uni-directional incentive constraints and discrete types, Celik (2006) makes
the same observation. His techniques for solving the subsequent problem do not apply to our framework with
continuous types.
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conditions for IC that allow us to relax problem P ′1.

Lemma 4 If (x , U) satisfies IC, then it satisfies the two following conditions:

M: U is decreasing.

ICL: U ′(θ )≤ −x(θ ) for all θ where the derivative exists.

Property M is straightforward and simply reflects that lower cost types can guarantee them-

selves at least the utility of a higher cost type by pretending to be that type. As to condition ICL,

note first that because U is decreasing, U is differentiable almost everywhere. Recall that in the

standard case where IC is required for all reports θ̂ , the derivative of the agent’s utility is actually

pinned down by the allocation x . In our case, where IC is required only for reports θ̂ > θ , it is

only necessary that the derivative of the agent’s utility is bounded by the allocation x .

The lemma implies that we obtain a relaxed version of P ′1 if we replace IC with the mono-

tonicity condition M and the “localized” condition ICL:

R1 : max
x ,U

∫ θ̄

θ

[v − θ]x(θ ) +Π(U(θ )) dF(θ ) s.t IR, M , ICL, UG (35)

We now solve R1 and then show that its solution also solves P ′1. We proceed in two steps. We

first show that at a solution to R1, trade never happens if it is inefficient, and the constraint ICL

is binding. In the second step, we use these properties to establish a solution to R1. To establish

the first step, let Φ be the (non-empty) feasible set for problem R1. We then obtain the following

result.

Lemma 5 Let ( x̃ , Ũ) ∈ Φ. Then there is (x , U) ∈ Φ which delivers the principal a (weakly) higher

profit than ( x̃ , Ũ) and has the following properties:

(i) If v < θ̄ , then x(θ ) = 0 for all θ > v.

(ii) U ′(θ ) = −x(θ ) for all θ .

The first part makes the familiar point that an optimal contract induces a downward distortion.

To understand the second part, recall that Π is concave with a maximum at USB. For a given

trading probability x , the principal therefore seeks to choose U as closely as possible to USB while

maintaining the incentive compatibility requirement that U ′(θ )≤ −x(θ ). Thus, an optimal choice

of U is maximally flat, implying that U ′(θ ) = −x(θ ).

We emphasize that although property (ii) corresponds to the revenue equivalence property

from standard screening models where IC is required for all reports θ̂ , in our setting, property

(ii) expresses an optimality rather than a feasibility condition.
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In standard screening models, property (ii) is useful, because it pins down the agent’s utility

U as an integral over the trading probability x . If, in addition, Π is linear, an integration by parts

argument can be used to replace U in the objective function of (35), and the problem can then be

solved by point-wise maximization over x(θ ). In our case, because Π is concave, this approach

does not work.

Our alternative approach is to instead use property (ii) to replace the trading probability x by

the agent’s utility function U in the objective function of (35) and then maximize over U . This

allows us to show that an optimal contract is in the class of cutoff-contracts where the good is

traded if and only if that agent’s cost is below a cutoff θ0 ∈ [θ .θ̄].

Definition 3 A cutoff-contract (x , U) is characterized by two parameters: a cutoff θ0 ∈ [θ , θ̄] and

an intercept U0 ≥ θ0 − θ such that

x(θ ) =

(

1 i f θ ≤ θ0

0 else
, U(θ ) =

(

U0 − (θ − θ ) i f θ ≤ θ0

U0 − (θ0 − θ ) else.
(36)

We denote by Λ the set of cutoff contracts. Clearly, Λ ⊂ Φ. We now state the main result of this

section that, under a regularity condition, a cutoff-contract is a solution to the relaxed problem

R1.

Proposition 1 Let (v−θ ) f ′(θ )
f (θ ) be increasing on the range [θ ,min{v, θ̄}]. Consider ( x̃ , Ũ) ∈ Φ. Then

there is a cutoff-contract (x , U) ∈ Λ which delivers a (weakly) higher profit than ( x̃ , Ũ).

While we prove the proposition in the appendix, the underlying logic is best understood in the

context of our uniform example. Note that the uniform example satisfies the regularity condition

trivially, as f ′(θ ) = 0.

Example: Consider some ( x̃ , Ũ) ∈ Φ. As indicated earlier, we can use part (ii) of Lemma 5 to

replace x̃ by Ũ ′ in the objective of (35). Using integration by parts and v = 1, the objective then

rewrites as

∫ θ̄

θ

[v − θ] x̃(θ ) +Π(Ũ(θ )) dF(θ ) =

∫ 1

0

−[v − θ]Ũ ′(θ ) +Π(Ũ(θ )) dθ (37)

= Ũ(0) +

∫ 1

0

Ũ(θ ) dθ +

∫ 1

0

Π(Ũ(θ )) dθ . (38)

We now construct a function U belonging to a cutoff-contract for which expression (38) is at

least as large as for Ũ . To do so, note that Lemma 5 implies that Ũ is a decreasing continuous
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U

θ
0

U0 = Ũ(0)

U0 − θ0

θ0

Ũ(1)

1

Ũ(θ )

U(θ )

θ̃

=
F

U

1

U0

1−θ0

U0 −θ0

1−θ̃

Ũ(1)

F U

F Ũ

Figure 1: The left panel illustrates, given Ũ and that θ is uniformly distributed over [0,1], the
construction of the cutoff contract U(.) such that U0 = Ũ(0) and

∫ 1

0
U(θ ) dθ =
∫ 1

0
Ũ(θ ) dθ . The

right panel shows the associated probability distributions F U and F Ũ of U and Ũ in utility space.
F Ũ is a mean preserving spread of F U .

function with a slope between −1 and 0. Therefore, because under a cutoff-contract, U has slope

−1 up to the cutoff θ0 and then slope 0, an intermediate value argument implies that we can find

U so that

U0 = Ũ(0),

∫ 1

0

U(θ ) dθ =

∫ 1

0

Ũ(θ ) dθ . (39)

In particular, there is a θ̃ ∈ [0,1] so that

U(θ )≤ Ũ(θ ) for θ ≤ θ̃ and U(θ )≥ Ũ(θ ) for θ ≥ θ̃ . (40)

The first panel of Figure 1 illustrates the construction graphically.

By (39), the first two terms in (38) are the same for U and Ũ . The key idea to analyze the third

term in (38) is to interpret the agent’s utility as a random variable which induces a probability

distribution in utility space (the pushforward). Formally, and as illustrated in the second panel of

Figure 1, the distributions induced by Ũ and U correspond to the cumulative distribution functions

F Ũ(u) = Pr(θ ∈ [0, 1] : Ũ(θ )≤ u) and F U(u) = Pr(θ ∈ [0, 1] : U(θ )≤ u). (41)

The key observation is now that the second part of (39) and (40) imply that F Ũ is a mean pre-

serving spread of F U . Therefore, because Π is concave, the third term in (38) is larger for U than

for Ũ . □
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For the general case without uniform distribution, the construction is analogous. The mean

preserving spread argument carries over unchanged. The role of the regularity condition is to

sign what corresponds to the first and second terms in (38), since these terms depend in general

on the density f .

The regularity condition in Proposition 1 is not entirely new to the literature. In a context

where the principal is a seller and the agent is a buyer, Manelli and Vincent (2006, Theorem 4)

impose an equivalent regularity condition when characterizing the profit maximizing solution in

a multi-dimensional screening problem. A sufficient condition for the regularity condition is that

jointly f ′ ≤ 0 and f is log-convex.19 Examples include the uniform distribution of our example,

and, more generally the family of power distributions F(θ ) = θα, θ ∈ [0,1], for α ≤ 1, or the

family of exponential distributions F(θ ) = 1− e−λθ , θ ≥ 0, λ≥ 0.

While our regularity condition is more restrictive than other regularity condition often found

in mechanism design (such as monotone hazard rates), we stress that the condition is not a

tight, but only a sufficient condition that ensures the optimality of a cutoff-contract and thus a

deterministic allocation in period 1. In general, if our regularity condition is violated, solving

R1 becomes complicated for two reasons: first, the incentive constraints do not rule out non-

monotone allocations. Second, even if one could show that a monotone allocation is optimal,

the principal’s problem is not a linear problem, and the trade-off between period 1 profits (which

are linear in U) and period 2 profits (which are concave in U) does generally lead to “interior”

solutions that do not correspond to allocations with possibly multiple cutoffs.

As mentioned above, the regularity condition is needed to control the sign of the principal’s

first period profit. Therefore, our results go through without the regularity condition whenever

second period profits are sufficiently higher than first period profits, for example, when the period

2 project has a much larger scale than the period 1 project.20

19To see this, note

d
dθ
(v − θ )

f ′(θ )
f (θ )

= −
f ′(θ )
f (θ )

+ (v − θ )
d

dθ
f ′(θ )
f (θ )

= −
f ′(θ )
f (θ )

+ (v − θ )
d

dθ
log( f (θ )). (42)

Because v − θ is positive on the range [θ , min{v, θ̄}], this expression is postive if f ′ ≤ 0 and log f is increasing, that
is, f is log-convex.

20More precisely, scale up the second period by multiplying the valuation v2 and costs θ2 by a factor λ≥ 1 so that
the principal’s continuation profit Π is increasing in λ. As shown in (99) in the appendix, the difference between the
principal’s profit from an arbitrary and a cutoff contract becomes ∆W =∆W1 +∆W2 with ∆W1 =

∫ v

θ
[(v − θ ) f ′(θ )

f (θ ) −

1][Ũ(θ )− Û(θ )] dF(θ ) and∆W2 =
∫ θ̄

θ
Π(Û(θ ))−Π(Ũ(θ )) dF(θ ). Our stochastic dominance argument implies that

for any distribution, we have ∆W2 > 0. The regularity condition implies that ∆W1 > 0 so that in this case, ∆W is
always for any λ. If the regularity conditions fails, then we have ∆W2 > 0 but may have ∆W1 < 0. In this case, ∆W
is positive when ∆W2 > 0 is sufficiently large, which is the case if λ is sufficiently large.
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Proposition 1 shows that a cutoff-contract is a solution to the relaxed problem R1. It is straight-

forward to verify that any cutoff-contract satisfies the constraints IC of the original problem.

Therefore, we have:

Proposition 2 Let (v − θ ) f ′(θ )
f (θ ) be increasing on the range [θ , min{v, θ̄}] , then there is a cutoff-

contract (x , U) ∈ Λ which solves problem P ′1. Moreover, a cutoff contract also satisfies constraint

IC0. Thus, it is a solution to the original problem P.

Since a cutoff-contract consists only of the two parameters θ0, U0, finding the optimal cutoff-

contract comes down to solving an optimization problem in two variables. We illustrate this

exercise in our running example.

Example: For our uniform example, the principal’s objective is

W (θ0, U0) =

∫ θ0

0

1− θ dθ +

∫ θ0

0

Π(U0 − θ ) dθ +

∫ 1

θ0

Π(U0 − θ0) dθ (43)

with U0 ≥ θ0 and where Π is given by (28). To determine the maximizer, we first determine an

optimal θ ∗0 (U0) for a given U0. A tedious but otherwise straightforward analysis of the first and

second order condition with respect to θ0 yields21

θ ∗0 (U0) = U0 − 1/18. (46)

Next, we maximize W (θ ∗0 (U0), U0) = W (U0 − 1/18, U0) with respect to U0. For U0 ≤ 1/2, this

expression reduces to 109/648+(5+4
p

2U0−9U0)U0/6 which is strictly increasing for U0 ≤ 1/2

so that a maximum exhibits U0 ≥ 1/2. For U0 > 1/2, the expression W (U0−1/18, U0) reduces to

the quadratic expression 41/324+ 4/3 · U0 − U2
0 which attains a maximum at U0 = 2/3.

We therefore conclude that (θ ∗0 , U∗0) = (11/18, 2/3) maximizes W (θ0, U0) with a payoff of

21The first order condition with respect to θ0 is:

∂W
∂ θ0

= (1− θ0)(1−Π′(U0 − θ0)) = 0 ⇔ θ0 = 1 or Π′(U0 − θ0) = 1. (44)

It is easy to check that θ0 = 1 is not a maximizer of W . By (28), the unique solution to Π′(U0 − θ0) = 1 is θ0 =
U0 − 1/18. This is indeed a maximizer of W (θ0, U0), because the second order condition is

∂ 2W
∂ θ 2

0

= −1+Π′(U0 − θ0) +Π
′′(U0 − θ0)(1− θ0)< 0, (45)

is satisfied for θ0 = U0 − 1/18, since the first two terms cancel, while Π′′(U) = −
p

2U−3/2/4 < 0 for U ≤ 1/2 and
U0 − θ0 = 1/18< 1/2.

21



FB sSB No LC LC
P’s payoff 1 .5 .75 .571
U’s payoff 0 .25 .125 .242
Surplus 1 .75 .875 .813

θ2

0
θ1

7
6

p2(θ1)

1

11
6

1
3

11
18

11
18

(0,0)

(0,1)

(1, 0)

(1, 1)

Figure 2: The table in the left panel presents the payoff comparisons of the four cases i) first best
(FB); ii) static second best (sSB); iii) no liquidity constraints (no LC); and iv) liquidity constraints
(LC). The graph in the right panel displays how optimal production (x1, x2) over the two periods
depend on type combinations (θ1,θ2), splitting the type space [0, 1] × [0, 1] into four regions,
where the curve p2(θ1) is the price that is paid to the agent for production in period 2 after
having reported θ1 in period 1.

185/324 ≈ 0.571, exceeding by 14% the principal’s payoff of 2ΠSB = 1/2, from charging twice

the static optimal price p = 1/2.

Recall from above that in the uniform example, the period 2 terms of trade can be implemented

by offering the agent a period 2 price p2 =
p

2U for U ≤ 1/2, and p2 = U + 1/2 for U >

1/2. With this in mind, period 1 cost types θ above the cutoff θ ∗0 = 11/18 do not produce

in period 1 and obtain expected period 2 utility of U(θ ) = U∗0 − θ
∗
0 = 2/3 − 11/18 = 1/18

corresponding to a period 2 price offer p2 = 1/3. All period 1 cost types θ below the cutoff θ ∗0 =

11/18 produce in the first period and obtain expected period 2 utility U(θ ) = U∗0 − θ = 2/3− θ .

This corresponds to a period 2 price offer p2(θ1) = U(θ1) + 1/2 = 7/6 − θ1 for θ1 ∈ [0,1/6),

and p2(θ1) =
p

2U(θ1) =
p

4/3− 2θ1 for θ1 ∈ [1/6,11/18). Interestingly, period 1 cost types

θ < 1/6 obtain a continuation utility U larger than 1/2. These types always produce in period

2, since they receive the offer to produce at a price larger than 1 in period 2. In particular, the

principal suffers a period 2 loss in this case.

The ex ante expected utility of the agent is 157/648 so that expected aggregate surplus is

185/324+157/648= 527/648≈ 0.813, compared to the first best surplus of 1. Without liquidity

constraints, aggregate surplus is 7/8=.875, while the twicely repeated static second best contract

yields aggregate surplus of .75. The table in the left panel of Figure 2 summarizes payoffs for

the different types of models. The graph in the right panel displays the dependence of optimal

production over the two periods on the first and second period type combinations (θ1,θ2). At our
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optimum, period 1 types produce if and only if θ1 ≤ 11/18, whereas period 2 types produce if

and only if θ2 ≤ p2(θ1), i.e., when their costs lies below the price p2(θ1). As the graph illustrates,

this yields four different regions. While the aggregate trade volume slightly increases from 11/18

in period 1 to 50/81 in period 222, we point out that conditional on cost type, trade does not

become more efficient: for example, the first period type θ1 = 11/18− ε always trades, but the

same second period type θ2 = 11/18−ε does not. In this sense, it is not clear-cut in which of the

periods the allocation is more efficient. □

Remark 2 (Implementation) We now briefly discuss how an optimal cutoff contract can be indi-

rectly implemented by a menu of prices. For simplicity, suppose that the optimal period 2 terms

of trade can be implemented by a posted price. Recall from Remark 1 that this is the case if, for

example, F2/ f2 is increasing.

An optimal contract can then be implemented by a menu {(r, p2(r)) | r ∈ [θ ,θ0]} where the

agent can choose to produce the good in period 1 for a price r and conditional on not going

bankrupt in period 1, obtains the option to produce the good in period 2 for the price p2(r)

where p2 is decreasing in r. Moreover, if the agent goes bankrupt in period 1, the relationship is

terminated.

To see this, recall that under a backloaded contract, the agent breaks even in period 1. Under

a cutoff contract, the agent therefore receives in period 1 the transfer θ̂1 and produces the good if

he announces θ̂1 ∈ [θ ,θ0] and stays liquid. If he announces θ̂1 ∈ (θ0, θ̄], he receives the transfer

0 and does not produce the good. This corresponds to choosing a price r = θ̂1 ∈ [θ ,θ0] at which

to deliver the good in period 1. Moreover, after announcing θ̂1, the agent obtains expected utility

U(θ̂1) in period 2 which can be implemented by a posted price p2(θ̂1) which is decreasing in θ̂1

because U(θ̂1) is decreasing in θ̂1. This corresponds to obtaining the option to produce the good

at p2(r) = p2(θ̂1) in period 2 after choosing the price r in period 1.

Remark 3 (Finitely many types) A novelty of our paper is that we study continuous types. Ashlagi

et al. (2023), like us, consider a linear, unit-good framework but with finitely many types and

where trade is always efficient. Their analysis shows that the case with more than two finitely

many types is analytically intractable. When there are two types, any contract that is feasible

(with their liquidity constraint) is a cut-off contract by definition, and their Proposition 4 shows

that a variety of deterministic contracts can be optimal, among them non-dynamic posted-price

contracts where the second period posted-price is independent of the first period report. Our

22The trade volume in period 2 is 1/6+
∫ 11/18

1/6

p

4/3− 2θ1 dθ1 + 7/18× 1/3.
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analysis suggests that this is a special feature of the two types case since with continuous types the

second period posted price always depends on the first period report (see the previous remark).

Remark 4 (Off-path liquidity constraints) As explained before Section 4, the approach of the

existing literature differs from our approach in that it considers the bi-directional version of IC1

and not having IC1
0 in problem P. Therefore, in the recursive formulation, the period 2 problem is

the same under both approaches. Moreover, since we consider a relaxed version without IC1
0 , the

period 1 problem the literature considers is precisely problem P1 with the difference that IC1 is

replaced by its bi-directional counterpart. Now, the solution to P1 exhibits the revenue equivalence

property U ′(θ ) = −x(θ ) (by Lemma 5) and, as a cutoff contract, displays a monotone allocation.

Therefore, the solution indeed satisfies the bi-directional counterpart of IC1 and is thus also a

solution to the problem studied in the literature.

When considering the bi-directional version of IC1, however, the following inconsistency

arises: consider a high cost type θ > θ0 (who does not produce the good) and a low cost type

θ̂ < θ0 (who does produce the good). Type θ ’s continuation value is lower than that of type θ̂ :

U(θ ) < U(θ̂ ). Imposing the bi-directional version of IC1 implies that type θ could obtain this

higher continuation value by reporting θ̂ . Therefore, what ensures bi-directional incentive com-

patibility is that one needs to assume that type θ would suffer a period 1 loss of t(θ̂ ) − θ < 0

from reporting to be type θ̂ . Clearly, this is inconsistent with the agent being periodically liquid-

ity constraint. In our approach, this inconsistency does not arise, because what ensures incentive

compatibility is that type θ would become illiquid when reporting to be type θ̂ , and then, as this

is verifiable, obtain a continuation value of zero.

Remark 5 (More than two periods) While we performed our analysis only for two periods, the

extension to multiple periods is straightforward. To illustrate, suppose that there are infinitely

many periods and that cost types θτ are i.i.d. with time-independent cdf F on the support [θ , θ̄].23

For the problem to be well-defined, assume that both parties discount future payoffs with a dis-

count factor δ ∈ [0, 1). Under the dynamic programming formulation, the principal’s choice

variables are a probability of trade x(θ ) for the current period and the expected continuation

utility for the agent U(θ ) that both depend on a report θ by the agent about his current type (as

well as on the history of past reports which we suppress). The principal’s value function Π(V )

is now defined recursively as a function of the agent’s expected utility V (starting as of now)

23The extension to an arbitrary finite time horizon is analogous but all expressions are time-dependent.
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according to the dynamic program:24

P∞ : Π(V ) =max
x ,U

∫ θ̄

θ

(v − θ )x(θ ) +δΠ(U(θ )) dF(θ ) s.t. (47)

IR : U(θ )≥ 0 ∀θ (48)

IC : U(θ )≥ (θ̂ − θ )x(θ̂ ) + U(θ̂ ) ∀θ ≤ θ̂ (49)

UG : x(θ ) ∈ [0, 1] ∀θ (50)

PK :

∫ θ̄

θ

δU(θ )dF(θ ) = V. (51)

While problem P∞ yields the principal’s value function, the solution to the principal’s overall

problem starting in the initial period is obtained by maximizing Π with respect to V .

The essential difference between P∞ and P ′1 is the presence of the promise keeping constraint

PK which ensures that the agent’s expected utility from the contract is V . As above, we consider

a relaxed problem where we localize IC and replace it with the constraints M and ICL as stated

in Lemma 4:

R∞ : Π̃(V ) =max
x ,U

∫ θ̄

θ

(v − θ )x(θ ) +δΠ̃(U(θ )) dF(θ ) s.t IR, M , ICL, UG, PK . (52)

It follows from standard arguments (see Stockey and Lucas, 1989, or Krishna et al. 2013) that Π̃

exists. Crucially, as in the two-period case, Π̃ is concave. Recall that to establish the optimality

of a cutoff contract for the two-period problem R1, we exploited the concavity of Π̃ to construct

for a every feasible contract ( x̃ , Ũ) a feasible cutoff-contract (x , U) that is an improvement. Note

that, in contrast to problem R1, feasibility in problem R∞ requires that a contract, in addition,

satisfies PK . Therefore, to extend the argument from R1 to R∞, we have to ensure that the cutoff

contract (x , U) that improves a given feasible contract does satisfy PK .

However, note that the cutoff contract (x , U) constructed in the two-period problem to improve

upon ( x̃ , Ũ) has the property that25

∫ θ̄

θ

U(θ )dF(θ ) =

∫ θ̄

θ

Ũ(θ )dF(θ ). (53)

24The formulation implicitly assumes that contracts are backloaded and excess payments are paid out “at infinity”.
This assumption is standard in the literature, and one motivation of it is that the discount factor corresponds to
the probability that the relationship does not terminate in the next round, and excess payments are made after
termination (which happens in finite time with probability 1).

25This corresponds to the right part of (39) where we defined (x , U) in the uniform example.
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Therefore, as ( x̃ , Ũ) is an arbitrary feasible contract and thus satisfies PK by definition, so does

(x , U). This shows that a cutoff contract is optimal also when there are more than two periods.

Remark 6 (Portability) We have solved for an optimal contract using a new method that ranks

contracts in terms of the spread of the distribution of the induced continuation values for the

agent. An open question is to what extent this method can be employed in a model with correlated

cost types (as in Krasikov and Lamba, 2021). Such an extension is beyond the scope of the

current paper because it implies that the agent’s continuation value becomes type dependent,

thus constraining the principal’s choice of continuation values.

Outside of the context of this paper, our method is applicable to static mechanism design prob-

lems with standard bilateral incentive constraints where agents have linear utility functions and

the principal’s payoff is concave in the agent’s information rent. An example is optimal redis-

tribution by a social planner who assigns (after-tax) payments t and (pre-tax) “labour income”

x to each of a continuum of agents’ who each privately know their labour cost θ . The social

planner seeks to maximize a social welfare function
∫

Π(U(θ )) dF(θ ) subject to the budget con-

strained that after-tax payments are lower than pre-tax income in the aggregate. The concavity of

Π captures the planner’s redistribution concerns. Our solution method is applicable when agents’

preferences are linear in type and transfer. In this case, the (slope of) the indirect utility U is

a function of the allocation, and analogous steps as above can be used to write the planner’s

problem as a constrained maximization problem over the indirect utility function where the (Lan-

grangian) objective ranks indirect utility functions depending on how spread out they are. We

leave a detailed analysis for future research.

5 Conclusion

We study short-term liquidity constraints in an otherwise standard dynamic screening model. We

argue that modelling a liquidity constraint as a hard, physical constraint whose violation forces

the agent to renege on the current contract terms implies that such a violation must be seen

as a verifiable event on which a long-term contract can condition . We show how this yields

a consistent framework in which liquidity concerns affect contractual feasibility constraints by

giving rise to one-sided incentive compatibility constraints.

While our assumption that the agent runs into liquidity problems results whenever the agent

makes short term losses is in line with standard approaches, in practice the occurrence and conse-

quences of liquidity problems may be more complicated than that, since they may, for example, be
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partially discretionary or involve restructuring processes which would affect the extent to which

liquidity problems are verifiable. It is an interesting avenue for future research to capture such

richer forms of liquidity concerns.
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Appendix

Proof of Lemma 1 Let γ̃ = ( x̃1, t̃1, x̃ L
2 , t̃ L

2 , x̃ I
2, t̃ I

2) be a feasible contract. Our proof strategy is to

first define an auxiliary contract γ̂ that is feasible and payoff-equivalent to γ̃ but under which the

agent never becomes illiquid. In a second step, we modify γ̂ to obtain the desired contract γ that

has the properties stated in the lemma. In what follows, we indicate all variables pertaining to γ̃

and γ̂ with a tilde and a hat.

Step 1: Define the auxiliary contract γ̂= ( x̂1, t̂1, x̂ L
2 , t̂ L

2 , x̂ I
2, t̂ I

2) by

( x̂1(θ1), t̂1(θ1)) =

(

( x̃1(θ1), t̃1(θ1)) if θ1 ∈ Θ̃L
1 ,

(0,0) otherwise
(54)

( x̂ L
2 (θ1,θ2), t̂ L

2(θ1,θ2)) =















( x̃ L
2 (θ1,θ2), t̃ L

2(θ1,θ2)) if θ1 ∈ Θ̃L
1 ,θ2 ∈ Θ̃

L,L
2 (θ1)

( x̃ I
2(θ1,θ2), t̃ I

2(θ1,θ2)) if θ1 ̸∈ Θ̃L
1 ,θ2 ∈ Θ̃

I ,L
2 (θ1)

(0, 0) otherwise,

(55)

( x̂ I
2(θ1,θ2), t̂ I

2(θ1,θ2)) = (0, 0) ∀θ1,θ2. (56)

We show that γ̂ is feasible and payoff-equivalent to γ̃. To see this, note first that, by construc-

tion, we have Θ̂L
1 = Θ1 and Θ̂L,L

2 (θ1) = Θ2 for all θ1. Furthermore,

Û L(θ1) = Ũ L(θ1) for θ1 ∈ Θ̃L
1 and Û L(θ1) = Ũ I(θ1) for θ1 ̸∈ Θ̃L

1 . (57)

To see feasibility, observe that γ̂ trivially satisfies (4) for ℓ = I , and inherits (4) for ℓ = L

by construction. To see (5), let t̂1(θ̂1)− θ1 x̂1(θ̂1) ≥ 0. Consider first the case that θ1 ∈ Θ̃L
1 and

θ̂1 ∈ Θ̃L
1 . Then, we have:

t̂1(θ1)− θ1 x̂1(θ1) + Û L(θ1) = t̃1(θ1)− θ1 x̃1(θ1) + Ũ L(θ1) (58)

≥ t̃1(θ̂1)− θ1 x̃1(θ̂1) + Ũ L(θ̂1) (59)

= t̂1(θ̂1)− θ1 x̂1(θ̂1) + Û L(θ̂1), (60)

where the inequality follows, because γ̃ satisfies (5) and the two equalities follow from (57). The

other cases can be shown analogously.

To see (6), note that the left hand side of (6) is non-negative by definition of γ̂. Moreover,

because x̂ I
2 = t̂ I

2 = 0, we have Û I(θ̂1) = 0 for all θ̂1 so that the right hand side is zero. Therefore,

(6) follows. To complete the proof of feasibility, note that (7) and (8) are void for γ̂, because
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Θ̂L
1 = Θ1.

Finally, γ̂ and γ̃ are payoff-equivalent, because by construction, if the agent is liquid under γ̃,

then γ̂ implements the same terms of trade as γ̃, and when the agent becomes illiquid under γ̃,

no trade occurs under γ̂ so that under either contract both the principal and the agent get zero.

Step 2: We now construct a feasible contract γ = (x1, t1, x L
2 , t L

2 , x I
2, t I

2) which is payoff-equivalent

to γ̂ and satisfies (12)-(14). To do so, note first that γ̂ satisfies (13) and (14), but may violate

(12) and display t̂1(θ1)− θ1 x̂1(θ1)> 0 for some θ1.

Define γ as the contract that differs from γ̂ only in that the period 1 profits for the agent are

backloaded to period 2. Formally, γ displays x1 = x̂1, x L
2 = x̂ L

2 , x I
2 = x̂ I

2, t I
2 = t̂ I

2 and payments

t1(θ ) = θ1 x1(θ1), t L
2(θ1,θ2) = t̂ L

2(θ1,θ2) + t̂1(θ1)− t1(θ1). (61)

Note first that γ satisfies (12) by construction. Moreover, it inherits (14) from γ̂ and also property

(13) because

t L
2(θ1,θ2)− θ2 x L

2 (θ1,θ2) = t̂ L
2(θ1,θ2) + t̂1(θ1)− t1(θ1)− θ2 x̂ L

2 (θ1,θ2) (62)

= t̂ L
2(θ1,θ2)− θ2 x̂ L

2 (θ1,θ2) + t̂1(θ1)− θ1 x̂1(θ1)≥ 0, (63)

where the inequality follows since under γ̂

dan, the agent is never illiquid.

We next show that γ is feasible. Indeed, γ trivially satisfies (4) for ℓ= I because x I
2 = t I

2 = 0.

For ℓ= L, we have for all θ1,θ2, θ̂2:

t L
2(θ1,θ2)− θ2 x L

2 (θ1,θ2) = t̂ L
2(θ1,θ2) + t̂1(θ1)− t1(θ1)− θ2 x L

2 (θ1,θ2) (64)

≥ t̂ L
2(θ1, θ̂2) + t̂1(θ1)− t1(θ1)− θ2 x L

2 (θ1, θ̂2) (65)

= t L
2(θ1, θ̂2)− θ2 x L

2 (θ1, θ̂2), (66)

where the first and the third lines use the definition of t L
2 , and the second line follows because γ̂

satisfies (4) for ℓ= L and since x L
2 = x̂ L

2 .

To see (5), consider θ1, θ̂1 so that t1(θ̂1)−θ1 x1(θ̂1)≥ 0. Because t̂1(θ̂1)≥ t1(θ̂1) and x̂1(θ̂ ) =

x1(θ̂ ), this implies that also t̂1(θ̂1)− θ1 x̂1(θ̂1)≥ 0. Therefore, since γ̂ satisfies (5), we have

t̂1(θ )− θ1 x̂1(θ1) + Û L(θ1) ≥ t̂1(θ̂ )− θ1 x̂1(θ̂1) + Û L(θ̂1). (67)
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Moreover, by construction, we have that t1(θ1)+U L(θ1) = t̂1(θ1)+Û L(θ1). These two observations

imply that

t1(θ1)− θ1 x1(θ1) + U L(θ1) = t̂1(θ )− θ1 x̂1(θ1) + Û L(θ1) (68)

≥ t̂1(θ̂ )− θ1 x̂1(θ̂1) + Û L(θ̂1) (69)

= t1(θ̂ )− θ1 x1(θ̂1) + U L(θ̂1). (70)

Furthermore, γ satisfies (6), because U I(θ̂1) = 0 for all θ̂1 and the left hand side of (6) is non-

negative. Finally, (7) and (8) are void for γ, because ΘL
1 = Θ̂

L
1 = Θ1.

It remains to show that γ and γ̂ are payoff-equivalent. But this follows, because the only

difference between the contracts is that the payments have been moved between periods, but the

sum of payments over the two periods is the same. qed

Proof of Lemma 2 Let γ = (x1, t1, x L
2 , t L

2 , x I
2, t I

2) be the contract induced by the backloaded con-

tract (x1, x2, t2). Hence, t1 = θ1 x1, x L
2 = x2 ,t L

2 = t2, x I
2 = t I

2 = 0. We have to show that γ is

feasible if and only if IC2 and IC1 hold. To see this, observe first that γ trivially satisfies (4) for

ℓ = I because x I
2 = t I

2 = 0. Moreover, for any backloaded-induced contract γ, the constraint (4)

for ℓ= L rewrites as IC2. Hence γ satisfies (4) if and only if it satisfies IC2.

We next show that constraint (5) is equivalent to IC1. Indeed, since t1(θ̂1) = θ̂1 x1(θ̂1) for all

θ̂1, we have

t1(θ̂1)− θ1 x1(θ̂1)≥ 0 ⇔ (θ̂1 − θ1)x1(θ̂1)≥ 0 ⇔ θ1 ≤ θ̂1. (71)

Hence, γ satisfies (5) if and only if for all θ1 ≤ θ̂1, we have t1(θ1)− θ1 x1(θ1) + U(θ1) ≥ t1(θ̂1)−

θ1 x1(θ̂1) + U(θ̂1). But because t1(θ ′1) − θ
′
1 x1(θ ′1) = 0 for all θ ′1 holds for any contract γ that is

induced by some backloaded contract, this is equivalent to IC1.

Moreover, γ always satisfies (6) because the right hand side of (6) is zero, and the left hand

side is non-negative. Finally, (7) and (8) are void for γ because ΘL
1 = Θ1. This completes the

proof. qed

Proof of Lemma 3 To simplify notation, we omit θ1 and suppress the time subindex. With stan-

dard screening arguments, we can write P2 as a maximization problem that maximizes the virtual
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surplus with respect to the allocation x(·) and the rent of the most inefficient type u(θ̄ ) as follows:

P2 : Π(U)≡ max
x ,u(θ̄ )

∫ θ̄

θ

�

v − θ −
F(θ )
f (θ )

�

x(θ ) dF(θ )− u(θ̄ ) s.t (72)

M : x(θ ) is decreasing in θ (73)

L2 : u(θ̄ )≥ 0 (74)

PK : u(θ̄ ) +

∫ θ̄

θ

x(θ )
F(θ )
f (θ )

dF(θ ) = U (75)

That Π(U) attains a maximum ΠSB
2 at USB

2 is explained in the main text.

To see the further claims of the Lemma note that PK pins down u(θ̄ ), and by substituting out

u(θ̄ ) in the objective (73) and L2, the problem simplifies to

P̂2 : Π(U)≡max
x

∫ θ̄

θ

(v − θ )x(θ ) dF(θ )− U s.t (76)

M : x(θ ) is decreasing in θ (77)

L2 :

∫ θ̄

θ

x(θ )
F(θ )
f (θ )

dF(θ )≤ U (78)

To see that Π(0) = 0, note that (78) implies that the only way to supply U = 0 is to have x(θ ) = 0

for all θ , resulting in zero profits, hence: Π(0) = 0.

To see that Π is concave, let x ′ resp. x ′′ be solutions to P̂2 for U ′ resp. U ′′. Then the allocation

x̄ = αx ′ + (1 − α)x ′′ satisfies M and L2 for U = αU ′ + (1 − α)U ′′. Moreover, x̄ yields profit

αΠ(U ′)+ (1−α)Π(U ′′). The solution to P̂2 for U = αU ′+(1−α)U ′′ must therefore yield at least

Π̄. Thus, we have Π(αU ′ + (1−α)U ′′) ≥ αΠ(U ′) + (1−α)Π(U ′′), which establishes concavity of

Π.

To see that Π(SFB) = 0, note that, by definition, Π+ U ≤ SFB for any allocation x(·). Hence,

we have Π(SFB) ≤ 0. To show Π(SFB) = 0, it therefore suffices to show that, for U = SFB, the

first-best allocation x FB(θ ) = 1[θ ,min{v,θ̄}](θ ) satisfies (77) and (78) and yields 0 for the objective

(76). Indeed, x FB(θ ) clearly satisfies (77) and, together with U = SFB, yields 0 for the objective

(76). To see that the first-best allocation also satisfies (78) for U = SFB
∫ min{v,θ̄}
θ

v−θ dF(θ ), note
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that by integration by parts:

∫ θ̄

θ

x FB(θ )
F(θ )
f (θ )

dF(θ ) =

∫ min{v,θ̄}

θ

F(θ )
f (θ )

dF(θ ) (79)

= −(v − θ )F(θ )
�

�

�

min{v,θ̄}

θ
+

∫ min{v,θ̄}

θ

v − θ dF(θ )≤ SFB. (80)

qed

Proof of Lemma 4 That U is decreasing is immediate from IC . Since U is decreasing, U has a

derivative almost everywhere by Lebesque’s Theorem. Now suppose that U ′ exists at θ . Note that

for h> 0, we can write IC as U(θ − h)− U(θ )≥ hx(θ ). Thus,

U ′(θ ) = lim
h→0

U(θ )− U(θ − h)
h

≤ −x(θ ), (81)

as desired. qed

Proof of Lemma 5 Let ( x̃ , Ũ) ∈ Φ be such that it does not satisfy (i) or (ii). We construct an

improvement (x , U) ∈ Φ that satisfies (i) and (ii).

Suppose that v < θ̄ and ( x̃ , Ũ) violates (i). Consider first the case that Ũ(v)≤ USB, and define

(x , U) as

x(θ ) =

(

x̃(θ ) i f θ ≤ v

0 i f θ > v
, U(θ ) =

(

Ũ(θ ) i f θ ≤ v

Ũ(v) i f θ > v.
(82)

Clearly, (x , U) ∈ Φ and satisfies (i). We next argue that (x , U) is a (weak) improvement over

( x̃ , Ũ) by showing that

∫ θ̄

θ

(v − θ )x(θ ) dF(θ )≥
∫ θ̄

θ

(v − θ ) x̃(θ ) dF(θ ), and (83)

∫ θ̄

θ

Π(U(θ )) dF(θ )≥
∫ θ̄

θ

Π(Ũ(θ )) dF(θ ). (84)

Inequality (83) is immediate from the definition of x . To see (84), note that because U is de-

creasing and U(v) ≤ USB by assumption, it follows by construction that for all θ > v, we have

USB ≥ U(θ ) ≥ Ũ(θ ). Thus, because Π is concave and uniquely maximized at USB by Lemma 3,

this implies that Π(U(θ ))≥ Π(Ũ(θ )) for all θ > v. Since U(θ ) = Ũ(θ ) for all θ ≤ v, (84) follows.
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Next consider the case that Ũ(v)> USB. Define (x , U) as

x(θ ) =

(

x̃(θ ) i f θ ≤ v

0 i f θ > v
, U(θ ) =

(

Ũ(θ ) i f θ ≤ v

USB i f θ > v.
(85)

Clearly, (x , U) ∈ Φ and satisfies (i). It follows with similar arguments as in the previous paragraph

that (x , U) is a (weak) improvement over ( x̃ , Ũ).

Finally, suppose ( x̃ , Ũ) violates (ii). Define

τ= sup{θ | Ũ(θ )≥ USB}. (86)

Because U is decreasing, we have that

Ũ(θ )≥ USB for all θ < τ, and Ũ(θ )< USB for all θ > τ. (87)

Define (x , U) as x(θ ) = x̃(θ ) for all θ , and

U(θ ) = USB −
∫ θ

τ

x(t) d t. (88)

Clearly, (x , U) ∈ Φ and satisfies (ii). To show that (x , U) yields a higher profit than ( x̃ , Ũ), observe

that because ( x̃ , Ũ) and (x , U) specify the same allocation x , it is sufficient to show that

Π(Ũ(θ ))≤ Π(U(θ )) for almost all θ . (89)

To see this, consider first the case that θ < τ. It is well-known that the derivative of a decreasing

function is (Lebesgue) integrable and that Ũ(θ )− Ũ(θ̃ ) ≥
∫ θ

θ̃
Ũ ′(t) d t for all θ , θ̃ . Hence, for all

ε > 0 with θ < τ− ε:

Ũ(θ ) ≥
∫ θ

τ−ε
Ũ ′(t) d t + Ũ(τ− ε) (90)

= −
∫ τ−ε

θ

Ũ ′(t) d t + Ũ(τ− ε) (91)

≥
∫ τ−ε

θ

x̃(t) d t + Ũ(τ− ε) (92)

= −
∫ θ

τ−ε
x(t) d t + Ũ(τ− ε), (93)
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where the second inequality follows from ICL, and the final equality from x = x̃ Because the

inequality holds for all ε > 0 and since Ũ(τ− ε)≥ USB by (87), we can infer that

Ũ(θ ) ≥ −
∫ θ

τ

x(t) d t + USB = U(θ ). (94)

Moreover, since θ < τ, we have U(θ )≥ USB, and accordingly, Ũ(θ )≥ U(θ )≥ USB. Because Π is

concave and uniquely maximized at USB by Lemma 3, these inequalities imply (89) for θ < τ. A

symmetrical argument works to show (89) for θ > τ, and this completes the proof. qed

Proof of Proposition 1 To avoid case distinctions, we only consider the case v < θ̄ . By Lemma

5, it is sufficient to prove the statement for ( x̃ , Ũ) ∈ Φ which satisfies properties (i) and (ii) from

Lemma 5. Consequently, we have:

(i’) Ũ(θ ) = Ũ(v) for all θ ≥ v.

We first construct a contract ( x̂ , Û) which is not necessarily in Λ that delivers a (weakly) more

profit than ( x̃ , Ũ). In a second step, we then construct (x , U)which is in Λ that delivers a (weakly)

higher profit than ( x̂ , Û).

As to the first step, define for α ∈ [Ũ(v), Ũ(θ )] the two functions

Ûα(θ ) =















Ũ(θ )− (θ − θ ) i f θ ∈ [θ , θ̂]

α i f θ ∈ (θ̂ , v)

Ũ(θ ) i f θ ∈ [v, θ̄]

, ∆(α)≡
∫ θ̄

θ

Ûα(θ )− Ũ(θ ) dF(θ ),

where θ̂ ≡ θ + Ũ(θ )−α ∈ [θ , v].

In words, Ûα starts at Ũ(θ ), then decreases with slope−1 until it attains the valueα at the point

θ̂ , then stays constant equal to α until it reaches the point θ = v, at which it jumps downwards

to Ũ(v) and stays constant from then on (since it coincides with Ũ which is constant on [v, θ̄] by

(i’) above)

Next, we show that there is α̂ ∈ [Ũ(v), Ũ(θ )] so that

∫ θ̄

θ

Ûα̂(θ ) dF(θ ) =

∫ θ̄

θ

Ũ(θ ) dF(θ ). (95)

Indeed, by construction, for α= Ũ(θ ), we have Ûα(θ )− Ũ(θ )≥ 0 for all θ , and for α= Ũ(v), we

have Ûα(θ )− Ũ(θ )≤ 0 for all θ . It follows that ∆(Ũ(θ ))≥ 0 and ∆(Ũ(v))≤ 0. Because ∆(α) is

continuous on α ∈ [Ũ(v), Ũ(θ )], the intermediate value theorem applies, implying (95).
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Moreover, because Ûα̂ and Ũ coincide on [v, θ̄] by construction, the previous equality can

equivalently be written as

∫ v

θ

Ûα̂(θ ) dF(θ ) =

∫ v

θ

Ũ(θ ) dF(θ ). (96)

From now on, denote Ûα̂ simply by Û . Moreover, let

x̂(θ ) =

(

1 i f θ ∈ [θ , θ̂]

0 i f θ > θ̂ .
(97)

We now show that ( x̂ , Û) yields a (weakly) higher profit than ( x̃ , Ũ). This is trivially the case

for α̂ = Ũ(v), where we have ( x̂ , Û) = ( x̃ , Ũ). Hence, suppose α̂ > Ũ(v). In this case, we

have Û(v) > Ũ(v). Therefore, because Û(θ ) = Ũ(θ ), Ũ ′(θ ) ≥ Û ′(θ ) = −1 for θ ∈ [θ , θ̂] and

Ũ ′(θ )≤ Û ′(θ ) = 0 for θ ∈ [θ̂ , v], there is a θ̃ ∈ [θ , v] so that

Û(θ )− Ũ(θ )≤ 0 ∀θ ≤ θ̃ and Û(θ )− Ũ(θ )≥ 0 ∀θ ≥ θ̃ . (98)

Using the facts that Û ′ = − x̂ and Ũ ′ = − x̃ , and x̂(θ ) = x̃(θ ) = 0 for all θ > v, we can write

the difference in the principal’s profits from ( x̂ , Û) and ( x̃ , Ũ) as

W ( x̂ , Û)−W ( x̃ , Ũ) =

∫ θ̄

θ

(v − θ )[ x̂(θ )− x̃(θ )] +Π(Û(θ ))−Π(Ũ(θ )) dF(θ )

=

∫ v

θ

(v − θ )[ x̂(θ )− x̃(θ )] dF(θ ) +

∫ θ̄

θ

Π(Û(θ ))−Π(Ũ(θ )) dF(θ )

=

∫ v

θ

(v − θ )[Ũ ′(θ )− Û ′(θ )] dF(θ ) +

∫ θ̄

θ

Π(Û(θ ))−Π(Ũ(θ )) dF(θ ).

Integrating the first integral by parts delivers

W ( x̂ , Û)−W ( x̃ , Ũ) = (v − θ ) f (θ )[Ũ(θ )− Û(θ )]
�

�

�

v

θ
(99)

−
∫ v

θ

[(v − θ )
f ′(θ )
f (θ )
− 1][Ũ(θ )− Û(θ )] dF(θ ) (100)

+

∫ θ̄

θ

Π(Û(θ ))−Π(Ũ(θ )) dF(θ ). (101)
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We now argue that this expression is positive. Observe first that by construction, Û(θ ) = Ũ(θ ),

and thus the right hand side of (99) is equal to zero. Moreover, by (96), expression (100) can

firstly be written as

−
∫ v

θ

[(v − θ )
f ′(θ )
f (θ )

][Ũ(θ )− Û(θ )] dF(θ ) = Y, (102)

and we can secondly add
∫ v

θ
[(v − θ̃ ) f ′(θ̃ )

f (θ̃ )
][Ũ(θ )− Û(θ )] dF(θ ) = 0, with θ̃ defined in (98), to

obtain:

Y = −
∫ v

θ

[(v − θ )
f ′(θ )
f (θ )
− (v − θ̃ )

f ′(θ̃ )

f (θ̃ )
][Ũ(θ )− Û(θ )] dF(θ ) (103)

= −
∫ θ̃

θ

[(v − θ )
f ′(θ )
f (θ )
− (v − θ̃ )

f ′(θ̃ )

f (θ̃ )
][Ũ(θ )− Û(θ )] dF(θ ) (104)

−
∫ v

θ̃

[(v − θ )
f ′(θ )
f (θ )
− (v − θ̃ )

f ′(θ̃ )

f (θ̃ )
][Ũ(θ )− Û(θ )] dF(θ ). (105)

Now, the assumption that (v−θ ) f ′(θ )
f (θ ) is increasing implies that the first bracket under the integral

(104) is negative for all θ ∈ [θ , θ̃], and (98) implies that the second bracket under the integral

(104) is positive for all θ ∈ [θ , θ̃], so that, overall (104) is positive. Analogously, (105) is positive.

Finally, to see that (101) is positive, define for an arbitrary decreasing function U , the cdf F U

as the push-forward measure, that is, the utility distribution induced by U , given by

F U(u) = Prob({θ | U(θ )≤ u}). (106)

By (95) and (98), F Ũ is a mean preserving spread of F Û . Thus, because Π is concave by Lemma

3, we have

∫ θ̄

θ

Π(Û(θ ))−Π(Ũ(θ )) dF(θ ) =

∫ θ̄

θ

Π(u) dF Û(u)−
∫

Π(u) dF Ũ(u)≥ 0. (107)

This completes the first step of the proof.

As to the second step, let ( x̂ , Û) from the first step be given. We construct (x , U) ∈ Λ which

delivers a (weakly) more profit than ( x̂ , Û). Indeed, let (x , U) be a cutoff-contract with cutoff
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θ0 = θ̂ and an intercept U0 ∈ [Û(v) + θ̂ − θ , Û(θ )] such that26

∫ θ̄

θ

U(θ ) dF(θ ) =

∫ θ̄

θ

Û(θ ) dF(θ ). (108)

This also implies that

U(θ )− Û(θ )≤ 0 ∀θ ≤ v and U(θ )− Û(θ )≥ 0 ∀θ ≥ v. (109)

Because θ0 = θ̂ implies x = x̂ , the difference in the principal’s profit from (x , U) and ( x̂ , Û) can

be written as

W (x , U)−W ( x̂ , Û) =

∫ θ̄

θ

(v − θ )[x(θ )− x̂(θ )] +Π(U(θ ))−Π(Û(θ )) dF(θ ) (110)

=

∫ θ̄

θ

Π(U(θ ))−Π(Û(θ )) dF(θ ). (111)

Similarly to the argument at the end of the first step, (108) and (109) imply that F Û is a mean

preserving spread of F U , and hence (111) is positive, and this completes the proof. qed

Proof of Proposition 2 Note first if there is a solution (x , U) ∈ Λ to the relaxed problem R1, then

because (x , U) ∈ Λ is obviously feasible for the problem P ′1, it is also a solution to P ′1. Moreover,

any contract (x , U) ∈ Λ satisfies the constraint IC0 and thus a solution (x , U) ∈ Λ to P ′1 is also a

solution to P. To see this, observe that for (x , U) ∈ Λ we have that Θ0
1 = (θ0, θ̄] by (36). To show

IC0, we thus have to show that U(θ )≥ U(θ̂ ) for all θ̂ ∈ (θ0, θ̄] and θ ∈ Θ. But this is immediate

from the definition of U in (36).

It remains to show existence of a solution (x , U) ∈ Λ to R1. For this recall that a cutoff contract

is characterized by cutoffs θ0 ∈ [θ , θ̄] and U0 ≥ θ0− θ . We first show the auxiliary claim that for

any ( x̃ , Ũ) ∈ Λ there is a (x , U) ∈ Λ which yields a (weakly) higher profit than ( x̃ , Ũ) and has the

property that

U0 ≤ USB + (θ̄ − θ ). (112)

Indeed, consider a ( x̃ , Ũ)with cutoffs (θ̃0, Ũ0) that violates (112). Since ( x̃ , Ũ) is a cutoff contract,

26Given θ0 = θ̂ , the cutoff U0 exists by the intermediate value theorem, because the integral on the left hand side
of (108) is strictly larger than the right hand side for U0 = Û(θ ), strictly lower for U0 = Û(v) + θ̂ − θ , and changes
continuously in U0.
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this implies that Ũ(θ )> USB for all θ . Define (x , U) ∈ Λ with cutoffs

θ0 = θ̃0, U0 = Ũ0 − (Ũ(θ̄ )− USB). (113)

By construction, we have that USB ≤ U(θ ) ≤ Ũ(θ ) for all θ . Thus, because Π is concave and

uniquely maximized at USB by Lemma 3, this implies that Π(U(θ )) ≥ Π(Ũ(θ )) for all θ . There-

fore, and since x = x̃ , we obtain the profit

W (x , U) =

∫

(v − θ ) x̃(θ ) +Π(U(θ )) dF(θ )≥
∫

(v − θ ) x̃(θ ) +Π(Ũ(θ )) dF(θ ) =W ( x̃ , Ũ),(114)

and this proves the auxiliary claim.

Now, let Λ̄ be the set of cutoff contracts that satisfy (112). That is, (x , U) ∈ Λ̄ if we can express

(x , U) as a cutoff contract with cutoff θ0 ∈ [θ , θ̄] and intercept U0 ∈ [θ0 − θ , USB + (θ̄ − θ )].

The auxiliary claim and Proposition 1 then imply that there is a solution (x , U) ∈ Λ to R1 if

there is a solution to the problem

Q : max
(x ,U)

W (x , U) s.t. (x , U) ∈ Λ̄. (115)

Because the profit W (x , U) of a cutoff contract is pinned down by (θ0, U0), problem Q boils down

to the problem of choosing a two-dimensional variable (θ0, U0) from the compact set [θ , θ̄]×[θ0−

θ , USB + (θ̄ − θ )]. Because profit is continuous in (θ0, U0), there is a solution to Q. Therefore,

there is a solution (x , U) ∈ Λ to R1, and this completes the proof. qed
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