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1 Introduction

Inflation rates in virtually all developed economies are positive on average, moderately volatile,

and persistent. The present paper rationalizes these properties in the context of a dynamic

stochastic general equilibrium model governed by optimal fiscal and monetary policies. The

central feature of the model is a benevolent government without commitment power. The

government has only access to distortionary instruments (a proportional income tax and the

nominal interest rate) but can also issue nominal non-state contingent debt in order to shift

distortions over time.

The lack of commitment power and the existence of nominal public debt create an incentive for

the policy maker to use inflation as a tax on the financial wealth held by private households.

This incentive increases with the amount of outstanding government debt and, in equilibrium,

is balanced by the costs associated with such a policy. In our model, these costs arise be-

cause consumption purchases by the private sector cause transaction costs. Positive inflation

increases these transaction costs and thus reduces current consumption possibilities. The trade-

off between the ex-post incentive to inflate and the increased transaction costs due to realized

inflation endogenously pins down the optimal issuance of debt together with taxes and interest

rates.

Debt is used by the government to smooth tax distortions over time and, thus, displays a

considerable degree of persistence. Taxes fall in response to productivity improvements and

rise in response to an increase in government expenditures. Nominal interest rates do not follow

the Friedman rule but are positive on average and larger than the rate of time preference. Hence,

inflation is positive on average. Moreover, the nature of the trade-off faced by the policy maker

renders optimal inflation rates highly correlated with the level of debt. Consequently, the

persistence of debt carries over to inflation and it follows that optimal discretionary policies are

characterized by positive and persistent inflation rates. It is important to emphasize that this

property holds independently of nominal rigidities and the degree of competition in product

markets.

With regard to its empirical predictions for the dynamics of inflation, our environment is
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distinct from the standard formulation of the New Keynesian model. In the latter model,

nominal rigidities in the wage or price setting mechanism generate persistence in the price level

but fail to produce persistence in inflation (Fuhrer and Moore, 1995). In an effort to formulate

an empirically plausible model, the subsequent New Keynesian literature has therefore sought

to augment the Phillips-curve by additional backward-looking elements: Fuhrer and Moore

(1995) suggest backward-looking wage contracting;1 Gali and Gertler (1999) and Steinsson

(2003) postulate that a fraction of producers set their prices according to a rule of thumb;

Christiano, Eichenbaum, and Evans (2005) propose a rich New Keynesian model featuring,

among other things, partial indexation to past inflation. While these hybrid Phillips-curve

approaches are successful in generating inflation persistence, they have been criticized for their

lack of a convincing microeconomic foundation. Introducing backward-looking behavior or any

departure from the assumption of rational expectations makes the theory susceptible to the

Lucas critique (Rabanal and Rubio-Ramirez, 2003), whereas indexation is inconsistent with

the evidence that many nominal prices remain constant for several periods; see, e.g., Bils and

Klenow (2004), Bils, Klenow, and Malin (2009), and Nakamura and Steinsson (2008).2

In response to these criticisms, several recent papers have attempted to rationalize inflation

persistence without resorting to assumptions that imply suboptimal or backward-looking be-

havior. These papers have identified persistent changes in monetary policy as driving forces

behind persistent inflation rates. Cogley and Sbordone (2008) and Ireland (2007) consider shifts

in the central bank’s inflation target that translate into drifts in trend inflation and, thus, induce

inflation persistence. Similarly, Erceg and Levin (2003) propose a model of incomplete informa-

tion where inflation persistence is generated via the private sector’s signal extraction problem

in the face of uncertainty about the monetary policy rule. Common to these contributions is

their emphasis on exogenous changes in the monetary policy regime. Our paper complements

this recent literature by presenting a model in which optimal macroeconomic policies are deter-

mined endogenously. Our results point to the fact that monetary-fiscal interactions in general,

1Formalizing the wage contracting mechanism in terms of contemporaneous data instead, Holden and Driscoll

(2003) show that inflation persistence no longer obtains.
2In addition, the hybrid Phillips-curve has recently also been questioned from an empirical angle, see e.g.,

Rudd and Whelan (2006).
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and the dynamics of government debt in particular, can be an important determinant of shifts

in monetary policy.3

Regarding its implications for inflation, our framework is fundamentally different from Ramsey

models of optimal fiscal and monetary policy. In these models optimal inflation is typically

negative on average and exhibits virtually zero persistence. This holds for environments in

which the Friedman rule is optimal, e.g., Chari, Christiano, and Kehoe (1991), and carries

over to environments with imperfect competition and nominal rigidities where the Friedman

rule does not obtain, e.g., Schmitt-Grohe and Uribe (2004a, 2004b) or Siu (2004). In a recent

paper, Chugh (2007) addresses this shortcoming and develops a Ramsey model with capital

accumulation and habits in consumption in which inflation is persistent.4 However, while Chugh

(2007) is successful in generating persistence, his model implies an implausibly high volatility

of inflation. Thus, his Ramsey approach, too, fails to fully account for the observed inflation

dynamics.

Finally, from a methodological point of view the present paper contributes to a growing lit-

erature on time-consistent optimal policy. This literature formulates the policy problem as a

game between successive governments, one for each time period, and analyzes Markov-perfect

equilibria of this game. Klein, Krusell, and Rios-Rull (2008) and Ortigueira (2006) use this ap-

proach to study optimal fiscal policy, i.e., public expenditures and taxation, in models without

money. Diaz-Gimenez, Giovannetti, Marimon, and Teles (2008) and Martin (2009) consider

optimal fiscal and monetary policies in deterministic economies with government debt. As-

suming that only distortionary instruments are available, they examine the policy maker’s

time-inconsistency problem and its long-run implications for government debt. Adam and Billi

3Following contributions by, among others, Leeper (1991), ? and ?, the fiscal theory of the price level posits

that fiscal policy can influence the price level. What separates our approach from the fiscal theory is that

here government debt only affects monetary variables because it changes the inflation incentives faced by a

government optimizing under discretion. In contrast, according to the fiscal theory, government debt affects

the price level because it is assumed that the monetary authority commits to a (possibly suboptimal) interest

rate rule while fiscal policy implements a (possibly suboptimal) exogenous path of real government surpluses;

the price level must then adjust to satisfy the intertemporal government budget constraint.
4For the implications of habits in consumption in the context of monetary policy models see, e.g., Fuhrer

(2000).
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(2008) examine optimal discretionary policy in a monetary economy without debt where fiscal

and monetary policies are implemented by separate authorities. They show that inflation con-

servatism remains desirable with endogenous fiscal policy. Finally, Niemann (2009) investigates

monetary conservatism in a framework with nominal debt and finds that inflation conservatism

has adverse welfare effects because of its implications for debt accumulation.

The remainder of the present paper is organized as follows. Section 2 describes a monetary

economy with flexible prices. Section 3 formulates the optimal policy problem in this economy

as a game between successive governments and defines Markov-perfect equilibria for this game.

Section 4 contains the main results for the flexible price economy. We derive the equilibrium

conditions, provide a number of analytical results about steady states in a non-stochastic version

of the model, and finally present the quantitative properties of the equilibrium in a calibrated

version of the model. We show in particular that optimal inflation rates are positive on average

and persistent. Section 5 introduces nominal rigidity into the model and shows that even with

a very small degree of price stickiness the model generates inflation dynamics that are very

close to those observed in the United States since the Volcker disinflation of the early 1980s.

Finally, section 6 concludes. Proofs and a brief evaluation of our computational algorithm are

relegated to the Appendix.

2 A flexible-price economy

Time evolves in discrete periods t ∈ {0, 1, 2, . . .}. We consider an infinite-horizon production

economy populated by a large number (a continuum of measure 1) of identical private agents

and a government. The private agents act both as consumers and as producers, prices are

flexible, and a demand for money arises due to its role in facilitating consumption transactions.
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2.1 The private sector

The preferences of the representative private agent are defined over sequences of consumption,

(ct)
∞
t=0, and labor effort, (ht)

∞
t=0, and are given by

E0

∞∑
t=0

βt[u(ct)− αht], (1)

where E0 denotes the mathematical expectation operator conditional on information available

in period 0, β ∈ (0, 1) is the time-preference factor, and α > 0 is the constant marginal utility

of leisure. We assume that the function u satisfies standard monotonicity, curvature, and

smoothness properties.

The agent enters period t holding Mt units of money and Bt units of one-period risk-free bonds

issued by the government. Each of these bonds pays one unit of money when it matures at the

end of period t. The agent has two sources of income in period t. First, it supplies ht units

of labor to a perfectly competitive labor market earning the nominal after-tax wage income

(1 − τt)Wtht, where τt and Wt denote the tax rate and the nominal wage rate, respectively,

in period t. Second, it earns profits from producing a differentiated intermediate good, which

forms an input for the production of the final consumption good. Each agent has access to a

linear production technology ỹt = ath̃t, which takes labor h̃t as the only input and is subject

to a stochastic productivity at. Notice that, while ht is the agent’s own labor supply, h̃t is

the amount of labor it demands on the labor market to produce the intermediate good. Labor

productivity at is the same for all agents and evolves according to

log at+1 = ρa log at + εa
t+1,

where ρa measures the autocorrelation of labor productivity and εa
t+1 ∼ N(0, σ2

εa) denotes the

period-(t + 1) innovation.

The final consumption good is a Dixit-Stiglitz aggregate of all intermediate goods. We denote

by θ > 1 the constant elasticity of substitution between any two intermediate inputs. When

θ → ∞, the economy approaches the limiting case of perfectly competitive product markets.

Denoting by P̃t the price of an intermediate good charged by its monopolistic producer and

by Pt the aggregate price level, the demand for the intermediate good depends on aggregate
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output yt and the relative price P̃t/Pt according to

d(P̃t, Pt, yt) = yt

(
P̃t/Pt

)−θ

.

When choosing its price P̃t, the agent takes the demand function d together with the aggregate

variables Pt and yt as given.

Finally, we postulate that each agent has to pay a proportional transaction cost s(vt) when

purchasing ct units of the consumption good. Here, vt is the agent’s consumption-based money

velocity defined by

vt = Ptct/Mt. (2)

Hence, as in Schmitt-Grohe and Uribe (2004a, 2004b), money is valued because it facilitates

transactions. Notice that the timing assumption underlying the definition of velocity in (2)

implies that the agents cannot reduce their transaction costs by rearranging their nominal

asset portfolios at the start of a period, but that they are bound by their predetermined money

holdings Mt. Thus, the velocity-based transaction cost s(vt) reflects a timing assumption

corresponding to the cash-in-advance setting in Svensson (1985). As for the function s itself

we follow Schmitt-Grohe and Uribe (2004a, 2004b) by assuming that (i) s takes non-negative

values and is twice continuously differentiable with first and second derivative sv and svv, (ii)

there exists a satiation level v > 0 such that s(v) = sv(v) = 0, (iii) (v − v)sv(v) > 0 for all

v 6= v, and (iv) 2sv(v) + vsvv(v) > 0 for all v ≥ v. These assumptions guarantee that money

demand is decreasing in the nominal interest rate and that the Friedman rule is not associated

with an infinite money demand.

To conclude, the agent’s budget constraint in period t is given by

Mt + Bt + (1− τt)Wtht + P̃tyt

(
P̃t/Pt

)−θ

−Wth̃t ≥ Ptct[1 + s(vt)] + Mt+1 + qtBt+1, (3)

where qt denotes the price of bonds purchased in period t, i.e., qt is the inverse of the gross

nominal interest rate on these bonds.
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2.2 The government

The government is benevolent and decides over monetary and fiscal policy instruments. It

faces a stream of exogenous, stochastic, and unproductive expenditures (gt)
∞
t=0, which evolves

according to

log gt+1 = (1− ρg) log ḡ + ρg log gt + εg
t+1.

The parameter ḡ denotes the steady state government expenditures, ρg is the autocorrelation

coefficient, and εg
t+1 ∼ N(0, σ2

εg). To finance its expenditures, the government imposes a pro-

portional labor income tax at rate τt, issues government bonds B̄t+1, and receives seignorage

income M̄t+1− M̄t.
5 Monetary policy manages the supply of money M̄t+1 and sets the price of

bonds qt. The consolidated government budget constraint in nominal terms is thus given by

τtWtht + (M̄t+1 − M̄t) + qtB̄t+1 ≥ Ptgt + B̄t. (4)

The policy instruments τt, B̄t+1, qt, and M̄t+1 must be chosen in such a way that (4) holds and

that the markets for bonds and money clear.

3 Equilibrium definition

A convenient way to characterize optimal discretionary policies is to assume that the govern-

ment actually consists of an infinite sequence of separate policy makers, one for each period.

The policy maker who is in charge in period k will be referred to as the period-k government.

This government seeks to maximize social welfare from period k onwards, whereby it takes the

behavior both of its later incarnations and of the private sector as given. In other words, we

consider an equilibrium in the game among the private sector and all period-k governments,

where k ranges from 0 to +∞. The private sector acts as a Stackelberg follower, whereas the

governments play Nash among each other and act as Stackelberg leaders against the private

sector. For simplicity, and following the dominant approach in the macroeconomic literature,

we restrict attention to Markov-perfect equilibria.

5Where necessary, we use bars to distinguish aggregate variables from their individual counterparts.
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3.1 Private-sector equilibrium

In this subsection we examine the properties of a private-sector equilibrium for given government

policies. To this end, we first divide all nominal variables (except for qt) by the aggregate money

stock M̄t, as in Cooley and Hansen (1991). For notational simplicity, we eliminate h̃t and denote

the normalized variables by lower case letters such as pt = Pt/M̄t, bt = Bt/M̄t, etc.. Equations

(2), (3), and (4) can then be rewritten as

vt =
ptct

mt

, (5)

mt + bt + (1− τt)wtht

pt

+ yt

(
p̃t

pt

)1−θ

− wtyt

atpt

(
p̃t

pt

)−θ

≥ ct[1 + s(vt)] +
(1 + µt)(mt+1 + qtbt+1)

pt

, (6)

τtwtht

pt

+
(1 + µt)(1 + qtb̄t+1)

pt

≥ gt +
1 + b̄t

pt

, (7)

where µt = M̄t+1/M̄t − 1 denotes the growth rate of the aggregate money stock.

The representative agent takes aggregate variables and government policies as given and maxi-

mizes its objective functional (1) subject to obvious non-negativity constraints, a no-Ponzi game

condition, the laws of motion for at and gt, the identity (5), and the flow budget constraint

(6). The solution to this problem is characterized by a set of standard first-order optimality

conditions.6 Imposing on these conditions that all private agents are identical and that markets

clear, i.e., b = b̄, m = 1, p̃ = p, we obtain a set of conditions that characterize a symmetric

6See the Appendix for a formal derivation of these conditions.
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private-sector equilibrium for given government policies. These conditions are7

0 =
α

(1− τ)w
− cuc(c)

vγ(v)
, (8)

0 = βE

{
c′uc(c

′)
v′γ(v′)

[
1 + sv(v

′)v′2
]}

− cuc(c)

vγ(v)
(1 + µ), (9)

0 = βE

[
c′uc(c

′)
v′γ(v′)

]
− cuc(c)

vγ(v)
(1 + µ)q, (10)

0 = c [1 + s (v)] +
(1 + µ)(1 + qb′)

p
− 1 + b

p
−

(
a− τw

p

)
h, (11)

0 = v − cp, (12)

0 =
w

p
− (θ − 1)a

θ
, (13)

where γ(v) = 1 + s(v) + sv(v)v.

Condition (8) equates the marginal disutility of supplying an additional unit of labor to the

marginal benefit, taking into account labor taxation and transaction costs. Conditions (9) and

(10) state that each household must be indifferent between consuming today and saving either

via money or via bonds. Condition (11) is the agent’s flow budget constraint, (12) defines the

velocity, and (13) specifies the real wage. The latter condition follows from optimal price setting

for intermediate goods. Notice that, since prices are flexible and the elasticity of substitution

between intermediate inputs is constant, the real wage rate is a constant fraction (θ − 1)/θ of

the productivity a.

3.2 The optimal policy problem

In any given period k, the government maximizes the expected lifetime utility of the representa-

tive agent from period k onwards. Formally, the objective functional of the period-k government

is

Ek

∞∑

t=k

βt−k[u(ct)− αht].

The government’s payoff is thus determined both by its own actions in period k and by the

actions of its future incarnations in periods k + 1, k + 2, etc.. While the period-k government

7Here and in what follows we employ recursive notation, i.e., time indices are omitted and a prime denotes

evaluation at the next period.
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cannot directly determine future policy decisions, it can influence these decisions indirectly

via the state of the economy. This is the case because future governments respond to the

aggregate state inherited from their respective predecessors. The aggregate state vector in

the present model is (b, a, g).8 When deciding upon the endogenous state b′ passed on to the

next government, the current government therefore needs to take into account how this affects

future policy decisions which, in turn, affect current and future consumption and labor market

decisions and, thus, welfare. Formally, this implies that each period-k government anticipates

its future incarnations’ policy rules together with the optimal response of the private sector to

the chosen policies.

To describe the government’s optimal policy problem, it is useful to introduce the continua-

tion value function. Notice that the objective functional of the period-k government can be

decomposed as

[u(ck)− αhk] + Ek

∞∑

t=k+1

βt−k[u(ct)− αht], (14)

where the first part gives the period-k government’s instantaneous utility and the second part

the present value of its payoff from future periods t > k.

Assume that all future governments use the policy rule Ψ : S → D, where S ⊆ R3 is the state

space (spanned by the variables b, a, and g) and where D ⊆ R2 is the policy decision space

for the instruments τ and q.9 Furthermore, let the private sector’s equilibrium response to

the policy rule Ψ be characterized by the rules C : S → R+, H : S → R+, V : S → R+,

B′ : S → R, etc., which we collect in the multidimensional rule D = (C,H,P ,W ,V ,M,B′).
With this notation at hand and employing a recursive formulation, we can write (14) as

u(c)− αh + βEU(b′, a′, g′), (15)

8Recall that because of symmetry and market clearing we have m = 1 and b = b̄. That is, our normalization

by the aggregate money stock implies that there is no need to keep track of m = m̄ = 1. In addition, individual

and aggregate states must coincide. In the following, we will therefore drop the superscript bar and use b to

denote the aggregate debt-to-money ratio.
9Notice that in our model there are four policy variables: τ , b′, µ, and q. When choosing these variables,

however, the policy maker has only two degrees of freedom. In what follows, we will assume that the policy

authority chooses τ and q, while b′ and µ are determined residually by money and bond market clearing

conditions.
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where U : S→ R is implicitly defined by the recursion

U(b′, a′, g′) = u(C(b′, a′, g′))− αH(b′, a′, g′) + βEU(B′(b′, a′, g′), a′′, g′′).

We will refer to U as the government’s continuation value function.

For a given future policy rule Ψ and the corresponding continuation value function U , the cur-

rent government faces a static optimization problem. We adopt a primal approach to examine

this problem. Hence, we postulate that the current government does not only decide upon its

own policy instruments but that it also chooses the current private-sector allocation subject to

the requirement that this allocation constitutes a symmetric private-sector equilibrium (given

the government’s policies). Formally, the optimal policy problem is given by

max
τ,q,c,h,v,p,w,µ,b′

[
u(c)− αh + βEU(b′, a′, g′)

]

subject to the feasibility constraint (7) and the private-sector optimality conditions (8)-(13)

with c′ = C(b′, a′, g′) and v′ = V(b′, a′, g′).10

3.3 Stationary Markov-perfect equilibrium

We now proceed to define the Markov-perfect equilibrium of the economy. To this end, we

introduce some more notation. We denote by Ψ̂ the policy rule for ψ̂ = (τ, q) employed by

the current government, and we collect the current private-sector decision variables in a vector

d̂ = (c, h, p, w, v, µ, b′). The corresponding decision rule is denoted D̂ = (Ĉ, Ĥ, P̂ , Ŵ , V̂ ,M̂, B̂′).

Definition: A stationary Markov-perfect equilibrium is a set of functions {Ψ̂, Ψ, D̂,D,U} such

that:

1. Given Ψ, D, and U ,

{Ψ̂, D̂} = arg max
ψ̂,d̂

[u(c)− αh + βEU(b′, a′, g′)]

subject to (7) and (8)-(13) with c′ = C(b′, a′, g′) and v′ = V(b′, a′, g′).

10The functions C and V are the private-sector optimal responses to future policies as defined above.
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2. It holds that Ψ̂ = Ψ, D̂ = D, and

U(b, a, g) = u(C(b, a, g))− αH(b, a, g) + βEU(B′(b, a, g), a′, g′).

The first condition states that the current policy rule Ψ̂ for the policy variables τ and q is optimal

for the current government, given that all future governments use the policy rule Ψ and given

that these policies (of both current and future governments) induce a symmetric private-sector

equilibrium. In other words, this is the Nash equilibrium condition for the game between

the different incarnations of the government. The second condition imposes stationarity on

this equilibrium. Note furthermore that the Markov-perfect equilibrium is time-consistent by

construction.

4 Equilibrium characterization

In the present section we characterize the solution of the model. We start by deriving the

equilibrium conditions. Then we consider steady states in a non-stochastic version of the

model and prove analytically (i) that there is a non-distorted and a distorted steady state,

(ii) that the Friedman rule is not optimal in the distorted steady state, and (iii) that the sign

of the steady state level of the debt-to-money ratio does not only depend on the elasticity of

intertemporal substitution. Finally, we return to the stochastic model and use a numerical

approach to derive quantitative results for a calibrated version.

4.1 Equilibrium conditions

In order to derive conditions characterizing a Markov-perfect equilibrium, we first rewrite the

government’s optimization problem in a compact form. More specifically, we introduce the
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functions

T̃ (c, v; a, g) =

[
θ − 1

θ
− αγ(v)

auc(c)

]
{c[1 + s(v)] + g} , (16)

µ̃(c, v, b′; a, g) = βE

{Cuc(C)vγ(v)

cuc(c)Vγ(V)

[
1 + sv(V)V2

]}− 1, (17)

r̃(c, v, b′; a, g) = βE

[Cuc(C)vγ(v)

cuc(c)Vγ(V)

]
, (18)

where, for the sake of better readability, we have omitted the arguments (b′, a′, g′) from the

future decision rules V and C. The functions T̃ , µ̃, and r̃ are derived by solving (7)-(13) for

T = τwh/p, µ, and r = (1 + µ)q, respectively. Notice that these functions are not equilibrium

policy functions, since they do not map the state space into the respective decisions. Rather,

given a and g, they determine the real tax revenue, the money growth rate, and the (reciprocal

value of the) gross real interest rate that are compatible with a private-sector equilibrium

conditional on the choices for c, v, and b′.

Making use of (16)-(18), we can formulate the government’s optimal policy problem as the

maximization with respect to c, v, and b′ of

u(c)− α

a
{c[1 + s(v)] + g}+ βEU(b′, a′, g′)

subject to the implementability constraint

E(c, v, b′; b, a, g) = T̃ (c, v; a, g) +
c

v
[µ̃(c, v, b′; a, g) + r̃(c, v, b′; a, g)b′ − b]− g = 0.

The first-order conditions associated with this problem are11

uc(c)− α

a
[1 + s(v)] = −η

v

c

{
T̃c(·) +

1

v
[µ̃(·) + r̃(·)b′ − b] +

c

v
[µ̃c(·) + r̃c(·)b′]

}
, (19)

αcsv(v)

a
= η

v

c

{
T̃v(·)− c

v2
[µ̃(·) + r̃(·)b′ − b] +

c

v
[µ̃v(·) + r̃v(·)b′]

}
, (20)

βEη′ = ηr̃(·) + η[µ̃b′(·) + r̃b′(·)b′], (21)

where ηv/c is the multiplier attached to the implementability constraint. Condition (19) char-

acterizes the government’s optimal choice of consumption. It equates the current utility gain

of a change in c to the utility cost arising from a tightening of the budget constraint. Similarly,

11Arguments of the functions T̃ , µ̃, and r̃ are omitted for simplicity.
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conditions (20) and (21) characterize the government’s optimal choice of velocity v and the

future debt-to-money ratio b′, respectively. Note that condition (21) involves derivatives of

the future policy functions C and V (which are contained in µ̃b′(·) and r̃b′(·)) and is usually

referred to as the generalized Euler equation. The term βEη′ on the left-hand side of (21) is

the discounted expected utility loss associated with a tightening of the future implementability

constraint due to a marginal increase in b′. The term ηr̃(·) on the right-hand side gives the

direct utility gain obtained from relaxing the current budget constraint via a marginal increase

in b′. The second term on the right-hand side, η[µ̃b′(·)+ r̃b′(·)b′], reflects the indirect utility gain

caused by a marginal relaxation of the current budget constraint. This indirect effect is due

to adjustments in the money growth rate and the interest rate that establish market clearing

at b′. The adjustments are necessary because future governments will respond to variations in

b′, as prescribed by the rules C and V . For a debt policy to be optimal, discounted expected

future losses due to a larger b′ must offset current (direct and indirect) gains, which is exactly

what equation (21) establishes.

4.2 Non-stochastic steady states

Let us now examine optimal Markovian policies in the non-stochastic version of the model

presented in Section 2. Restricting attention to the deterministic case allows us to obtain

analytical results. Throughout this subsection, we therefore assume that a = 1 and g = ḡ hold

at all dates and states, and we will omit these functional arguments.

Inspection of the generalized Euler equation (21) suggests that there exist two non-stochastic

steady states solutions: one of them is undistorted whereas the other one is distorted. In the

undistorted steady state it holds that η′ = η = 0 such that the implementability constraint is

slack and

uc(c) = α.

At this steady state, the optimal (first-best) allocation is implemented, which is feasible if

the government has sufficiently high claims on the private sector, allowing it to finance its

expenditures without the need to resort to distortionary taxation. In particular, at this steady
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state the Friedman rule applies and the labor tax rate is negative with an absolute value high

enough to undo the distortion due to monopolistic competition.12

The distorted steady state features η′ = η > 0, which implies that the implementability con-

straint binds. In the distorted steady state the government must finance at least part of its ex-

penditures via taxation. It is obvious from (18) that in the steady state we have r̃(c∗, v∗, b∗) = β,

where b∗ is the steady state debt level, c∗ = C(b∗), and v∗ = V(b∗). From (21) we therefore see

that the debt level b∗ at the distorted steady state is characterized by the condition

0 = µ̃b′(c
∗, v∗, b∗) + r̃b′(c

∗, v∗, b∗)b∗. (22)

Notice that equation (22) involves the derivatives of the unknown equilibrium policy functions

C and V evaluated at the steady state; see also equations (17)-(18). In general, it is therefore

impossible to solve for the steady state without solving for these functions. Nevertheless, one

can prove two analytical results.

The first one shows that in a stationary Markov perfect equilibrium the Friedman rule can-

not hold in a neighborhood around the distorted steady state b∗ provided that the latter is

dynamically stable. We prove this result for a utility function of the form

u(c) =
c1−σ − 1

1− σ
, (23)

where σ is a positive parameter different from 1. Note that the Friedman rule can be formulated

in two equivalent ways, namely either that the nominal interest rate is equal to 0, i.e., q =

Q(b) = 1, or that there are no transactions costs, i.e., v = V(b) = v.

Proposition 1 Let the utility function be given by (23) with 0 < σ 6= 1 and let b∗ be the

distorted steady state. If b∗ is a dynamically stable fixed point of the equilibrium dynamics, then

there does not exist δ > 0 such that V(b) = v holds for all b ∈ (b∗ − δ, b∗ + δ).

The formal proof is relegated to the Appendix. A brief sketch is as follows. Recall that

the optimal choice of the debt-to-money ratio b′ in a distorted Markovian steady state must

12See the working paper Niemann, Pichler, and Sorger (2008) for an analysis of the dynamic properties of

optimal fiscal and monetary policy without commitment in the neighborhood of the first-best steady state

within a similar economic environment.
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eliminate the associated indirect utility effect, i.e., equation (22) must hold. As we show in

the Appendix, if preferences are given by (23) and if the Friedman rule holds, this implies that

b∗ = −1. This means that the value of total government liabilities M̄ + B̄ is equal to zero in

the steady state. It is not difficult to verify that for v = v and b = b′ = b∗ = −1, the first-

order effect of a marginal change in the velocity v on the implementability constraint, i.e., the

right-hand side of (20), is non-zero. Due to the assumptions on the transaction cost function s

(especially sv(v) = 0), the first-order effect on current utility is zero whenever v = v; see the

left-hand side of (20). Hence, the government has an incentive to deviate from v = v.

When preferences are given by (23) with σ = 1, that is, under a logarithmic utility function, the

above argument cannot be used to prove Proposition 1 as equation (22) holds identically for all

debt-to-money ratios. Nevertheless, the first-order effect on transaction costs of deviating from

v = v is still equal to zero, whereas the indirect effect via the implementability constraint is

likely to be non-zero. Hence, we conjecture that Proposition 1 remains true, at least generically,

also in the case σ = 1. Numerical computations support this conjecture.

Finally, notice that Proposition 1 holds irrespective of the degree of monopolistic competi-

tion in product markets. This is an important qualitative difference to optimal policy under

commitment, where the Friedman rule typically turns out to be optimal in perfectly competi-

tive environments; see, e.g., Chari, Christiano, and Kehoe (1991) or Schmitt-Grohe and Uribe

(2004a).

Having established that the Friedman rule fails to hold in a distorted Markovian equilibrium,

we now investigate the determinants of the non-stochastic steady state level of debt b∗. It is

useful to begin this exercise by discussing the results obtained by Diaz-Gimenez, Giovannetti,

Marimon, and Teles (2008) and Martin (2009) in a related framework. These authors have

shown that in a cash-in-advance economy with CES preferences for consumption, the sign

and level of long-run debt are pinned down by the elasticity of intertemporal substitution.

Specifically, b∗ is increasing in σ with b∗ > 0 if σ > 1, b∗ = 0 if σ = 1, and b∗ < 0 if σ < 1. This

property can be explained as a result of the interaction of two principles of optimal taxation.

Whenever a cash-in-advance constraint binds, the price elasticity of current consumption is

unitary. Therefore, if σ > 1, current consumption is relatively elastic as compared to future
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consumption. As a consequence, the government has a discretionary incentive to trade current

distortions for future distortions, i.e., to increase current consumption and debt. Let us call this

the intertemporal elasticity effect. If the level of debt is non-positive, this incentive triggers an

increase of debt such that b ≤ 0 cannot prevail in steady state. For positive levels of government

debt, however, there is a counteracting effect since any increase in current consumption triggers

a corresponding decrease in the price level due to the cash-in-advance constraint. Hence, if debt

is positive, the deflation needed to increase current consumption hurts the government because

it increases the real value of its liabilities. The magnitude of this nominal debt effect obviously

increases with b. In a Markovian steady state the level of debt adjusts to that point where both

effects exactly offset each other. This implies that b∗ > 0 if σ > 1, b∗ = 0 if σ = 1, and b∗ < 0

if σ < 1.

The environment considered in the present paper does not include a cash-in-advance constraint

but a velocity-based transaction cost function. The endogenous choice of velocity adds an addi-

tional degree of freedom to the government’s optimal policy problem. Variations in consumption

do not necessarily trigger adjustments in the price level, as they can be accommodated by vari-

ations in velocity. While the elasticity of intertemporal substitution still plays an important

role in determining long-run debt, the clear-cut result of the cash-in-advance environment does

not carry over to the transaction cost framework. The following proposition illustrates this by

means of a simple example for which a closed form solution can be derived. This example is

based on a logarithmic utility function, i.e., equation (23) holds with σ = 1, and shows that

the level of debt need not be zero as in the cash-in-advance environment, but can be negative,

zero, or positive depending on the parameters of the transaction cost function.

Proposition 2 Assume that u(c) = log c and s(v) = v/(4A) + A/v − 1, where A is a positive

parameter. The steady-state level of debt in a distorted Markovian equilibrium is given by

b∗ = A− 1.

The proof is again relegated to the Appendix. Even if this result is stated only for a very

special case, numerical calculations show that the basic message holds much more generally:

both the sign and the size of long-run debt are not pinned down by the elasticity parameter

σ alone. The intuition behind this property is that an increase of the parameter A reduces
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both the level and the slope of the transaction cost function s(v) for any fixed value of v. This

means that it becomes less costly for the policy maker to accommodate an increase of current

consumption by a corresponding increase of velocity. In other words, the nominal debt effect

mentioned above becomes weaker for any given value of debt. In order for it to still compensate

the (unchanged) intertemporal substitution effect, the steady state level of debt must therefore

increase. This illustrates why the steady state indebtedness b∗ is increasing with respect to A.

4.3 Quantitative results

We now return to the stochastic economy and explore the quantitative properties of optimal

policies under discretion. Since the stochastic model lacks analytical tractability, we solve it

numerically. For this task we use projection methods as described in Judd (1992) and compute

fourth-order accurate polynomial approximations to the equilibrium policy functions.13 We

then simulate artificial time series and study the equilibrium dynamics by means of summary

statistics and impulse responses.

Parameterization

In a first step we assign values to the model parameters. We set β = 1/1.04 which is a standard

calibration for models with annual data. The utility function is specified as in (23) with σ = 2,

a value in the middle of the parameter range typically considered in the literature. As for

the elasticity of substitution between intermediate goods we choose θ = 20; this implies a

monopolistic mark-up of 5.26%, similar to Siu (2004). The technology parameters are set to

ρa = 0.82 and σa = 0.023 as in Schmitt-Grohe and Uribe (2004a). The preference parameter

α is selected such that labor supply in steady state is roughly equal to one third of the time

endowment; this yields α = 10.4. The remaining parameters are chosen in line with U.S.

data available from Martin (2009). Government expenditure in steady state is set to ḡ = 0.06

corresponding to roughly 18% of output, ρg = 0.8 matching the autocorrelation coefficient of

government expenditures in the data, and σg = 0.04 such that government spending differs by

roughly four percentage points from its average. Finally, the transaction cost function is chosen

13A brief description and evaluation of our algorithm is available in the Appendix.
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to be s(v) = A1v + A2/v − 2
√

A1A2, where A1 = 0.137 and A2 = 2.3. The calibration of A1

and A2 ensures that the model generates the steady state velocity v∗ = 4.37, which is in line

with the average velocity in the data, and the government debt-to-GDP ratio equal to 30.8%.14

Non-optimality of the Friedman rule and inflation persistence

Having assigned values to the parameters we can now present our results. Table 1 contains

several summary statistics for the key policy and real variables: inflation, the net nominal

interest rate R = q−1− 1, taxes, velocity, hours worked, consumption, the debt-to-money ratio

b, and real debt b/p. The first panel considers perfectly competitive product markets and

the second one our baseline calibration with monopolistic competition and mark-ups of 5.26%.

The numbers reported are computed as averages over N = 500 simulations, each simulation of

length T = 1000 periods.

The first panel in Table 1 demonstrates that, on average, annual inflation is around 15% with a

first-order autocorrelation coefficient exceeding 0.75. Hence, optimal inflation rates are positive

on average, even when product markets are perfectly competitive. Moreover, inflation displays

substantial persistence. The high inflation rates are associated with high nominal interest

rates. For example, under perfect competition, the nominal interest rates are close to 20%,

which demonstrates that optimal monetary policy is far from implementing the Friedman rule.

These observations contrast sharply with findings in the Ramsey literature (e.g., Schmitt-Grohe

and Uribe, 2004a).

The intuition behind this striking difference in optimal policy prescriptions is best understood

as follows. First, to see why optimal inflation rates are positive, recall the arguments used in the

context of Proposition 1. In particular, we established that, when σ > 1, future consumption is

inelastic relative to current consumption, which gives the government a discretionary incentive

to increase current consumption at the expense of higher future indebtedness. In equilibrium,

14While our choice of functional form for the transaction cost function s(v) is identical to Schmitt-Grohe and

Uribe (2004a, 2004b), our values for A1 and A2 differ considerably from the corresponding values used there.

This is because our values are calibrated rather than estimated from money demand regressions. We prefer the

former approach as we found the parameter estimates obtained from money demand regressions to be extremely

sensitive to the data sample employed, as also reported by Cooley and Hansen (1991).
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Table 1: Dynamics under flexible prices

x mean(x) std(x) corr(x′, x) corr(x, y) corr(x, a) corr(x, g)

Perfect competition (θ = ∞)

π 15.1443 3.5622 0.7655 -0.0105 -0.3101 0.7019

R 19.7405 3.7042 0.9434 0.0245 -0.3331 0.8298

τ 16.1550 0.7889 0.7382 0.0759 -0.3558 0.9184

v 4.2694 0.0323 0.9673 0.0120 -0.3058 0.7594

y 0.3380 0.0070 0.8106 1.0000 0.9040 0.4246

h 0.3380 0.0077 0.7978 -0.6668 -0.9212 0.3794

c 0.2776 0.0067 0.8298 0.7281 0.9470 -0.3073

b/p 0.1098 0.0032 0.8133 0.5820 0.5492 0.3138

b 1.6904 0.0628 0.9693 0.0089 -0.2474 0.7549

Imperfect competition (θ = 20)

π 26.8860 4.1799 0.7822 0.0087 -0.3204 0.7577

R 31.9527 4.3741 0.9218 0.0425 -0.3395 0.8737

τ 15.2300 0.8307 0.7241 0.0712 -0.3526 0.9177

v 4.3725 0.0377 0.9533 0.0342 -0.3173 0.8197

y 0.3293 0.0068 0.8109 1.0000 0.9071 0.4195

h 0.3293 0.0075 0.8000 -0.6758 -0.9230 0.3763

c 0.2684 0.0066 0.8284 0.7100 0.9374 -0.3371

b/p 0.1016 0.0025 0.7266 0.7090 0.7602 0.1194

b 1.6561 0.0477 0.9598 0.0244 -0.2571 0.8015
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this incentive must be balanced by economic costs arising from increasing current consumption.

An increase in consumption can be accommodated via an increase in velocity and/or a decrease

in the price level. Hence, costs from higher consumption arise whenever these channels are costly

to exercise. For increases in velocity to be costly, v must be above the satiation level v, driving

monetary policy away from the Friedman rule. As a result, we observe positive nominal interest

rates (and inflation rates).

A similar argument explains why optimal inflation rates under discretion are persistent. Recall

that, in an equilibrium with σ > 1, it is not sufficient that increases in velocity are costly, but

decreases in the price level must be costly, too. Put differently, the government generally has

an incentive to create inflation in order to monetize nominal debt. Notice that this incentive

depends strongly on the level of debt. In particular, the government’s inflation incentives and,

thus, the realized inflation rates are increasing in the level of debt. This property is illustrated

in Figure 1, which visualizes the equilibrium inflation policy as a function of the endogenous

state variable b. Moreover, the desire to smooth consumption makes the government implement

a relatively smooth path for debt such that the variable b is highly persistent. Taken together,

these properties generate persistence in the incentive to inflate and consequently in realized

inflation rates.

Taxes, inflation, and debt as shock absorbers

We next discuss the shock-absorbing role of labor income taxes, inflation, and debt. The

statistics presented in the first panel of Table 1 show that both the labor tax and inflation are

persistent and relatively volatile. Moreover, both instruments are negatively correlated with

productivity and positively correlated with government expenditure, suggesting that both play

a similar role in absorbing macroeconomic shocks. To investigate this property more thoroughly,

we examine the impulse response to an uncorrelated government purchases shock. The dynamic

adjustments displayed in Figure 2 confirm that, under optimal discretionary policy, taxes,

inflation, and debt are jointly used as shock absorbers. In particular, the government responds

to an expenditure shock in period one by simultaneously raising the tax rate, printing money,
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Figure 1: Inflation policy under flexible prices
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debt-to-money ratio from its steady state level, and on the vertical axis
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technology and government expenditure levels are fixed at their steady

state levels a = 1 and ḡ, respectively.

and issuing debt.15 This policy reduces private consumption and stimulates economic activity,

such that the aggregate resource constraint holds at the higher level of public expenditure.

In period two, government expenditure returns to its pre-shock level but the government has

a higher amount of debt outstanding, which must be serviced in the following periods. As

revealed by the impulse responses shown in Figure 2, the government essentially achieves this

by means of a monetary expansion. It increases the inflation rate, which reaches a maximum

two years after the shock and then gradually returns to its steady state level. Observe that

several years after the shock has occurred, inflation is still noticeably above its pre-shock level.

On the other hand, the government in period two finds it optimal to reduce the labor tax, even

slightly below the pre-shock level, and to raise taxes slightly but gradually later. This policy

stimulates labor effort and helps to maintain a smooth consumption path, a feature of optimal

15Notice that nominal debt is initially inelastic, such that the instantaneous rise in the price level suppresses

the real value of debt in period one.
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Figure 2: Impulse responses to an i.i.d. government purchases shock
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policy that is familiar from the Ramsey literature.

The effects of imperfect competition

Finally, we briefly examine the role of imperfect competition. A comparison of the two panels

of Table 1 reveals that, unlike in an environment of full commitment, imperfect competition has

no qualitative effect on optimal policy under discretion. In particular, as we have argued before,

the non-optimality of the Friedman rule does not hinge on this feature. However, the statistics

in Table 1 show that there are noticeable quantitative effects of imperfect competition. For

example, with θ = 20 the government relies more on the inflation tax and less on the labor tax to

finance its outlays compared to the perfectly competitive case θ = ∞. The mechanism driving

this result is the same that breaks the optimality of the Friedman rule under commitment.

When markets are imperfectly competitive, households earn positive profits, which are pure

rents from monopoly power. The government would like to confiscate these profits but cannot

do so because it lacks the proper tax instrument. However, it can use inflation as an indirect

tax on profits because the transactions technology requires households to hold money in order

to make consumption purchases. This property makes inflation relatively more attractive as a

tax instrument compared to an environment with perfect competition.16

5 Sticky prices

The results of the previous section have demonstrated that inflation rates under optimal dis-

cretionary fiscal and monetary policies are positive and persistent, two features in line with

the actual time series evidence. As visualized in Figure 3, annual inflation rates in the U.S.

averaged at roughly 4% over the time period 1962-2006 with a standard deviation of about 2%

and a first-order autocorrelation coefficient around 0.8. Considering only the period after the

Volcker disinflation, 1983-2006, inflation was on average around 2.6% with a standard deviation

of 0.8% and an autocorrelation coefficient of slightly below 0.8. These numbers demonstrate

that the degree of persistence in our flexible price model is broadly in line with reality, whereas

16For further details see Schmitt-Grohe and Uribe (2004b).
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the level of inflation clearly is not. Hence, the question arises whether the introduction of some

form of nominal rigidity into the model is helpful in generating inflation dynamics resembling

those observed in actual data. In what follows, we explore this question.

Figure 3: The U.S. GDP deflator 1962-2006
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To introduce nominal rigidities into the model, we assume that price changes induce resource

costs. Specifically, following Rotemberg (1982) and Schmitt-Grohe and Uribe (2004b), we

postulate that households face quadratic price adjustment costs given by

(κ/2)
(
P̃t/P̃t−1 − 1

)2

,

where κ is a non-negative parameter. Incorporating price adjustment costs complicates the

model along two important dimensions. First, the price level of the preceding period, Pt−1,

becomes a second endogenous state variable in the recursive formulation of the government’s

optimization problem. This is the case because the government, when choosing optimal policies,

needs to know the previous period’s price level in order to infer the magnitude of the price

adjustment cost that is incurred. Second, in the model with costly price adjustment, the real

wage rate is no longer a constant fraction of marginal productivity. Rather, real wages are
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determined by the forward-looking Phillips curve relation

w

p
=

(θ − 1)a

θ
+

κ

θh

{
π(1 + π)− βE

[
uc(c

′)γ(v)

uc(c)γ(v′)
π′(1 + π′)

]}
, (24)

where π denotes the net inflation rate. The real wage thus generally differs from the desired

mark-up over the marginal product of labor. Equation (24) is well-known in the macroeconomic

literature, and we thus relegate its formal derivation, together with a description of the Markov-

perfect equilibrium conditions in the sticky-price environment, to the Appendix.

Dynamics under sticky prices

We proceed by discussing the quantitative predictions of the sticky price model as summarized

in Table 2. The most striking observation is that already a modest degree of rigidity has

substantial effects on the inflation dynamics. With κ = 0.5, average annual inflation is down to

below 3% compared to approximately 26% under flexible prices. With κ = 1, average inflation

is close to 1%.17 Similarly, the volatility of inflation as measured by its standard deviation

declines substantially. On the other hand, both the level and the volatility of labor income

taxes rise. This reflects the fact that, under sticky prices, the resource costs associated with

inflation induce the government to rely more on labor taxes rather than on inflation to finance

its outlays.

We observe furthermore that price stickiness slightly but noticeably affects the persistence of

optimal inflation rates as measured by the first-order autocorrelation. Moreover, this effect is

non-monotone. The intuition behind this property is the following. As previously explained, the

level of government debt is the principal determinant of inflation. Specifically, the government’s

inflation incentives and, thus, equilibrium inflation are increasing in debt. Under sticky prices,

the convexity of the price adjustment costs implies that the reduction of the government’s

inflation incentive is stronger at high levels of debt (or inflation). This property reduces the

correlation between inflation and the level of debt, as confirmed by the policy functions depicted

in Figure 4. Consequently, this effect leads to a lower degree of inflation persistence. On the

17Notice that our value for κ is several magnitudes smaller than values typically considered in the macroeco-

nomics literature. For example, Schmitt-Grohe and Uribe (2004b) employ the value κ = 4.375 which, according

to them, represents a “miniscule degree of price stickiness” (emphasis added).
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Table 2: Dynamics under sticky prices

x mean(x) std(x) corr(x′, x) corr(x, y) corr(x, a) corr(x, g)

κ = 0.5

π 2.5744 0.9648 0.7129 -0.1997 -0.5443 0.6171

R 6.6534 1.5874 0.8354 -0.4512 -0.7766 0.5456

τ 19.8609 1.2751 0.7851 0.1216 -0.3396 0.9247

v 4.1567 0.0271 -0.0024 0.0593 0.1528 0.1153

y 0.3289 0.0066 0.8447 1.0000 0.8822 0.4525

h 0.3289 0.0079 0.7437 -0.6246 -0.9184 0.3735

c 0.2685 0.0063 0.8768 0.6925 0.9323 -0.3253

b/p 0.0919 0.0048 0.9691 0.0190 -0.1167 0.4484

b 1.4252 0.0960 0.9665 -0.2194 -0.4024 0.6010

κ = 1

π 1.1429 0.6677 0.7879 -0.1845 -0.4758 0.5243

R 5.1588 1.3653 0.7990 -0.5025 -0.8152 0.4578

τ 19.9525 1.2531 0.7782 0.1488 -0.3310 0.9181

v 4.1437 0.0313 -0.0828 0.0754 0.2541 -0.0031

y 0.3291 0.0066 0.8461 1.0000 0.8674 0.4735

h 0.3291 0.0081 0.7359 -0.5916 -0.9140 0.3794

c 0.2688 0.0061 0.8848 0.6878 0.9331 -0.3090

b/p 0.0762 0.0089 0.9889 -0.0578 -0.1670 0.3774

b 1.1766 0.1525 0.9837 -0.1612 -0.3014 0.5026
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other hand, introducing sticky prices increases the persistence of debt since it limits the shock-

absorbing role of inflation (compare Schmitt-Grohe and Uribe, 2004b). This latter effect leads

to a higher degree of inflation persistence. Whether inflation persistence increases or decreases

due to price stickiness depends therefore on which of the two effects dominates.

Figure 4: Inflation policy under sticky prices
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Finally, we compare the dynamics of inflation in our sticky price model to inflation rates in

the United States. The first panel in Table 2 shows that all three summary statistics (mean,

standard deviation, autocorrelation coefficient) are somewhat smaller in the model than their

counterparts in the data over the entire sample period 1962-2006. However, if we consider only

the period after the Volcker disinflation (1983-2006), we find that the inflation dynamics in the

model are well in line with the data. With κ = 0.5, inflation is approximately 2.6% on average

in the model which is very close to the data; its standard deviation is roughly 1% in the model

and 0.8% in the data; the first-order autocorrelation coefficient is 0.72 in the model compared

to 0.78 in the data. With κ = 1, the simulations almost exactly reproduce the persistence of
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inflation in the data sample 1983-2006, while the average level and volatility of inflation are

somewhat lower than their empirical counterparts. These results show that the predictions of

the sticky price model are broadly in line with the inflation dynamics in the U.S. observed over

the past 25 years. Regarding this positive implication, our framework improves upon Ramsey

models of optimal policy which typically fail to rationalize observed inflation dynamics.18

Simple monetary policy rules

We conclude our analysis of optimal fiscal and monetary policy under sticky prices by examining

how well these policies can be approximated by simple rules. In a seminal paper, Taylor (1993)

has argued that U.S. monetary policy can be characterized in terms of a feedback rule according

to which the nominal interest rate responds to changes in inflation and the output gap:

Rt = ρ0 + ρππt + ρyŷt + ut. (25)

In the above expression, ρ0, ρπ, and ρy are coefficients chosen by the monetary authority, ŷ

denotes the percentage deviation of output from its long-term trend (the output gap), and

ut is a residual. Taylor argues for ρπ = 1.5 and ρy = 0.5, such that monetary policy is

active in the sense that it responds to inflation more than one-by-one. In other words, the

monetary authority raises the real interest rate in response to an increase in inflation. This

property, known as the Taylor principle, is appealing also from a normative perspective because

it stabilizes the economy by ensuring uniqueness of the rational expectations equilibrium.19

In what follows, we examine how well optimal monetary policy in the sticky price model in-

troduced above can be represented by a Taylor-type policy rule. To this end, we generate

simulated time series for the nominal interest rate, inflation, and output to estimate (25) by

18In this context, notice that by choosing a particular value of κ, one can effectively pin down the average

inflation rate in the sticky price model. However, this has effects on the volatility and persistence of inflation.

We believe that our model is in line with observed inflation dynamics because it simultaneously matches all three

statistics (mean, standard deviation, autocorrelation coefficient). In addition, independent of their calibration,

Ramsey models of optimal fiscal and monetary policy typically cannot generate any inflation persistence.
19This result has been derived by Leeper (1991) in a setting with passive fiscal policy, i.e., a fiscal policy rule

which guarantees that the government budget constraint is satisfied for all possible paths of the price level.

30



means of OLS. Reporting the average coefficients across a sample of N = 500 simulations with

a period length of T = 1000, the estimated equation is given by

Rt = 2.74 + 1.52πt + 0.00ŷt + ut, R2 = 0.85.

Accordingly, optimal monetary policy responds strongly to inflation and satisfies the Taylor

principle.20 It does not respond at all to the output gap, which is in line with Schmitt-Grohe

and Uribe (2007) who argue that interest rate rules featuring a positive response to output can

lead to significant welfare losses.

It is widely argued that monetary authorities display a tendency to adjust nominal interest

rates only gradually in response to changes in economic conditions. Moreover, such a policy

may be desirable from a welfare perspective (Woodford, 2003). In order to assess our model’s

implications in this light, we further introduce an interest-rate smoothing term in the estimated

equation. Our main results are qualitatively insensitive to this modification. In particular,

adding the lagged interest rate as explanatory variable we obtain

Rt = 1.29 + 1.09πt + 0.00ŷt + 0.39Rt−1 + ut, R2 = 0.93.

Optimal policy still satisfies the Taylor principle and does not respond to output, while the

interest-rate smoothing term is significant with a coefficient close to 0.4.21 Finally, notice that

the R2 measures of the above regressions are 0.85 and 0.93, respectively. Thus, these simple

Taylor-type rules seem to do a reasonably good job in describing optimal monetary policy.22

6 Conclusion

This paper has examined the dynamic properties of inflation in a model of optimal fiscal and

monetary policy under discretion. In this model, there is a single benevolent government that

20The 99% confidence interval for the inflation coefficient is [1.4067, 1.6352].
21The 99% confidence interval for the inflation coefficient is now [1.0057, 1.1842], while for the interest rate

coefficient it is [0.3413, 0.4283].
22To examine the quality of approximation more thoroughly, we could follow Schmitt-Grohe and Uribe (2007)

and compare welfare under both Taylor-type rules with welfare under optimal policy. This exercise is, however,

beyond the scope of the present analysis.
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can only use distortionary tax instruments, but can issue nominal state-noncontingent debt

to shift distortions over time. Under lack of commitment and with nominal public debt, the

government’s problem is to optimally trade off the benefits and costs of inflation. On the

one hand, unanticipated inflation in our model is attractive since it reduces the real value

of outstanding liabilities. On the other hand, inflation is costly because it reduces current

consumption possibilities by increasing transaction costs. This critical trade-off generates a

rationale for fiscal and monetary policies that lead to positive and persistent inflation rates in

equilibrium. This is true already for an economy with perfectly competitive product markets

and flexible prices. Thus, our main results hold in a neo-classical environment. The introduction

of New-Keynesian elements, i.e., imperfect competition and price stickiness, is found to have no

qualitative effects on inflation dynamics but important quantitative implications. In particular,

we show that, with a very modest degree of price rigidity, the dynamics of optimal inflation

rates implied by our model closely resemble the dynamics observed for actual inflation rates in

the U.S. since the Volcker disinflation of the early 1980s.
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Appendix

A1. The private agent’s optimality conditions

In this appendix we derive the optimality conditions associated with the representative private

agent’s optimization problem. We employ a recursive formulation of this problem.

Inspection of (5) and (6) reveals that the set of individual endogenous payoff-relevant state

variables in the representative agent’s problem is given by {m, b}. Furthermore, (7) shows

that there is a single aggregate endogenous state variable, the government debt-to-money ratio

b̄. The latter variable becomes an aggregate state variable, because the government bases its

policy decisions on it so that it enters the private agent’s problem via policy variables and

market prices (such as the interest rate or the after-tax wage).

Taking these consideration into account and using recursive notation (where primes indicate

next-period variables), the optimization problem of the representative agent is given by

V (m, b, b̄; a, g) = max
c,h,m′,b′,p̃

[
u(c)− αh + βEV (m′, b′,B′(b̄, a, g); a′, g′)

]

subject to obvious non-negativity constraints, a no-Ponzi constraint, the laws of motion for a

and g, and the flow budget constraint

c
[
1 + s

(pc

m

)]
+

(1 + µ)(m′ + qb′)
p

≤ m + b + (1− τ)wh

p
+ y

(
p̃

p

)1−θ

− wy

ap

(
p̃

p

)−θ

.

The latter is a combination of (5) and (6) and is repeated here for convenience. Notice that

B′(b̄, a, g) is the private agent’s perceived law of motion for the endogenous aggregate state

variable b̄. Denoting the Lagrangian multiplier attached to the budget constraint by λ, the

first-order optimality conditions are given by

0 = uc(c)− λ
[
1 + s

(pc

m

)
+ csv

(pc

m

) p

m

]
,

0 = −α +
λ

p
(1− τ)w,

0 = βE

{
λ′

p′

[
1 + sv

(
p′c′

m′

)(
p′c′

m′

)2
]}

− λ

p
(1 + µ),

0 = βE
λ′

p′
− λ

p
(1 + µ)q,
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0 = λ

[
(1− θ)y

p

(
p̃

p

)−θ

+
θwy

ap2

(
p̃

p

)−θ−1
]

,

where sv and uc denote the derivatives of the functions s and u, respectively. Notice that we

have used the envelope conditions

Vm =
λ

p

[
1 + sv

(pc

m

)(pc

m

)2
]

and Vb =
λ

p

to eliminate the derivatives of the value function. Imposing symmetry and market clearing, we

obtain m = 1, b = b̄, and p̃ = p. The optimality conditions of the agent can then be written as

0 = uc(c)− (λ/p) [1 + s(v) + sv(v)v] p,

0 = −α + (λ/p)(1− τ)w,

0 = βE

{
λ′

p′

[
1 + sv (v′) (v′)2

]}
− λ

p
(1 + µ),

0 = βE(λ′/p′)− (λ/p)(1 + µ)q,

0 = c [1 + s (v)] +
(1 + µ)(1 + qb′)

p
− 1 + b

p
−

(
1− τw

ap

)
ah,

0 = v − pc,

0 =
w

p
− (θ − 1)a

θ
.

Eliminating λ/p and introducing the function γ(v) = 1+s(v)+sv(v)v, one arrives at the system

(8)-(13).

A2. Proof of Proposition 1

The proof is by contradiction. Let us therefore assume that the Friedman rule holds close to the

steady state b∗, and that b∗ is a stable fixed point of the equilibrium dynamics. The Friedman

rule implies that v = V(b) = v and q = Q(b) = 1 whenever b ∈ (b∗− δ, b∗+ δ). This shows that,

close to the steady state, the functions µ̃(c, v, b′) and r̃(c, v, b′) defined in (17)-(18) depend on b′

only via the function C(b′). Moreover, because the utility function has the form (23) we know

that C(b′)uc(C(b′)) = C(b′)1−σ. Taking these observations together, it follows from (17)-(18)

that equation (22) is equivalent to

0 = β(1− σ)(1 + b∗)Cb(b
∗)/C(b∗). (26)
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Now consider the government’s budget constraint (7) and the implementability constraints (8)-

(13). Using the assumptions that we have a deterministic model with g = ḡ and a = 1 and

that the Friedman rule holds around the steady state, i.e., q = 1 and v = v, we can write these

conditions as

τwh

p
+

(1 + µ)(1 + b′)
p

− 1 + b

p
= ḡ,

αp

(1− τ)w
=

pcuc(c)

v
,

βf(c′) = f(c)(1 + µ),

c +
(1 + µ)(1 + b′)

p
− 1 + b

p
=

(
1− τw

p

)
h,

v = cp,

w

p
=

θ − 1

θ
,

where f(c) = cuc(c). Using the first equation as well as the last three equations to eliminate

the variables w, p, h, and τ , one obtains

[C(b) + ḡ]

[
θ − 1

θ
− α

uc(C(b))

]
+

[1 +M(b)][1 + B′(b)]C(b)

v
− (1 + b)C(b)

v
= ḡ, (27)

βf(C(B′(b)) = f(C(b))[1 +M(b)] (28)

for all b sufficiently close to b∗. Because B′(b∗) = b∗ holds by the definition of a steady state, it

follows immediately from (28) that M(b∗) = β − 1.

In the next step, we prove that Cb(b
∗) 6= 0. Suppose to the contrary that Cb(b

∗) = 0 holds. In

that case it follows from (28) that Mb(b
∗) = 0 must hold as well. Differentiating (27) with

respect to b, evaluating at b = b∗, and using B′(b∗) = b∗, M(b∗) = β − 1, and Mb(b
∗) = 0, one

obtains

Cb(b
∗)

{
θ − 1

θ
− α

uc(C(b∗))
+

α[C(b∗) + ḡ]ucc(C(b∗))
uc(C(b∗))2

+
(β − 1)(1 + b∗)

v

}
=
C(b∗)

v
[1− βB′b(b∗)].

Since Cb(b
∗) = 0 has been assumed, the left-hand side of this equation is equal to zero. But this

implies that the right-hand side must also be equal to zero which, in turn, requires B′b(b∗) = 1/β.

On the other hand, stability of b∗ in the equilibrium dynamics requires that |B′b(b∗)| < 1. This

contradiction completes the proof of Cb(b
∗) 6= 0.

For the final step of the proof, we note that σ 6= 1 and Cb(b
∗) 6= 0 together with (26) imply that

1+b∗ = 0. Now consider the optimality condition with respect to velocity, (20). Evaluating this
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condition at a distorted steady state where η 6= 0 and noting that v = v due to the Friedman

rule, it follows that

0 = vT̃v(v, c∗)/c∗ − (β − 1)(1 + b∗)/v + β[1 + vγv(v)] (1 + b∗) /v.

Since we know that 1 + b∗ = 0 must hold, this condition can be written as vT̃v(v, c∗)/c∗ = 0.

On the other hand, from assumptions (ii) and (iv) on the properties of the transaction cost

function s(v) it follows that vT̃v(v, c∗)/c∗ < 0. Hence, we have a contradiction and the proof of

the proposition is complete.

A3. Proof of Proposition 2

Proof: Since u(c) = log c we have cuc(c) = 1 such that the functions µ̃ and r̃ in (17)-(18) do

not depend on c and that they depend on b′ only via the function V(b′). Moreover, because

of s(v) = v/(4A) + A/v − 1 we have sv(v) = 1/(4A) − A/v2 and γ(v) = v/(2A). Using these

observations, one easily finds that

µ̃b′(c
∗, v∗, b∗) =

2β(A− 1)Vb′(b
∗)

v∗
,

r̃b′(c
∗, v∗, b∗) = −2βVb′(b

∗)
v∗

.

Substituting this into condition (22) it follows that b∗ = A− 1 is a steady state. ¤

A4. The numerical algorithm

Our numerical solution for the Markov-perfect equilibrium employs a Galerkin projection

method along the lines of Judd (1992). This method is well-known among economists and

discussed in several textbooks such as Judd (1998), Marimon and Scott (1999), or Heer and

Maussner (2005). We therefore refer the interested reader to these textbooks for a general

description of the methodology, and to our computer code for details about the particular

implementation.

We do present, however, a brief evaluation of the numerical accuracy of the algorithm. Figure

5 plots the approximation error in the generalized Euler equation (21) as well as its partial
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Figure 5: Approximation error
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derivative (wrt. the endogenous state variable b) as a function of b, holding the exogenous state

variables fixed at their respective steady state levels. Notice that the inspection of the error

in the derivative is important because the generalized Euler equation establishes a functional

relationship such that optimal policy rules must guarantee not only that the equation itself holds

(approximately), but also that its derivative is approximately equal to zero at all values of b.

For our fourth-order polynomial approximation, the errors in the generalized Euler equation

and its derivative are roughly of the order of magnitude 10−5, which we view as a reasonable

level of accuracy. Numerical experiments using a fifth-order approximation have shown that the

approximation error could be further reduced. However, small accuracy improvements come

at the cost of a dramatically increased computational burden since the model has several state

variables. More importantly, refining the approximation turned out to have only negligible

effects on the dynamic properties of the model as captured by summary statistics or impulse

responses. We thus conclude that the fourth-order approximation is sufficiently accurate for

our purposes.
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A5. Equilibrium conditions in the sticky price model

In this appendix we derive the equilibrium conditions for the sticky price model from Section 5.

First, notice that with quadratic price adjustment costs, the private agent’s budget constraint

reads

Mt + Bt + (1− τt)Wtht + P̃tyt

(
P̃t/Pt

)−θ

−Wth̃t − (κ/2)
(
P̃t/P̃t−1 − 1

)2

Pt

≥ Ptct[1 + s(vt)] + Mt+1 + qtBt+1.

Dividing this equation by Pt and using ath̃t = yt(P̃t/Pt)
−θ, we obtain

mt + bt

pt

+
(1− τt)wtht

pt

+ yt

(
p̃t

pt

)1−θ

− wtyt

ptat

(
p̃t

pt

)−θ

− κ

2

[
p̃t(1 + µt−1)

p̃t−1

− 1

]2

≥ ct[1 + s(vt)] +
(1 + µt)(mt+1 + qtbt+1)

pt

,

where lower case letters indicate normalized variables of the kind xt = Xt/M̄t and where 1+µt

is the rate of money growth between (the beginning of) periods t and t + 1. Introducing

z̃t = (1 + µt−1)/p̃t−1 and using recursive notation, the optimization problem of a representative

agent is given by

V (m, b, b̄, z̃; a, g) = max
c,h,m′,b′,p̃

[
u(c)− αh + βEV (m′, b′,B′(b̄), z̃′; a′, g′)

]

subject to obvious non-negativity constraints, the laws of motion for a and g, and the flow

budget constraint

c
[
1 + s

(pc

m

)]
+

(1 + µ)(m′ + qb′)
p

≤ m + b

p
+

(1− τ)wh

p
+ y

(
p̃

p

)1−θ

− wy

pa

(
p̃

p

)−θ

− κ

2
(p̃z̃ − 1)2 .
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Denoting the Lagrangian multiplier attached to the budget constraint by λ, the first-order

conditions associated with the agent’s problem are given by

0 = uc(c)− λ
[
1 + s

(pc

m

)
+ csv

(pc

m

) p

m

]
,

0 = −α +
λ

p
(1− τ)w,

0 = βE

{
λ′

p′

[
1 + sv

(
p′c′

m′

)(
p′c′

m′

)2
]}

− λ

p
(1 + µ),

0 = βE
λ′

p′
− λ

p
(1 + µ)q,

0 = λ

[
(1− θ)y

p

(
p̃

p

)−θ

+
θwy

ap2

(
p̃

p

)−θ−1

− κ (p̃z̃ − 1) z̃

]
+ βE

[
λ′κ (p̃′z̃′ − 1)

p̃′z̃′

p̃

]
,

0 = z̃′ − (1 + µ)/p̃,

where we have used ∂z̃′/∂p̃ = −z̃′/p̃ as well as the envelope conditions

Vm =
λ

p

[
1 + sv

(pc

m

)(pc

m

)2
]

,

Vb = λ/p,

Vz = −λκ (p̃z̃ − 1) p̃.

Our focus is on a symmetric private-sector equilibrium. In such an equilibrium, it must hold

that m = 1, b = b̄, p̃ = p, and z̃ = z. Substituting this into the optimality conditions from

above, we obtain

0 = uc(c)− (λ/p) [1 + s (v) + sv (v) v] p,

0 = −α + (λ/p)(1− τ)w,

0 = βE

{
λ′

p′

[
1 + sv (v′) (v′)2

]}
− λ

p
(1 + µ),

0 = βE(λ′/p′)− (λ/p)(1 + µ)q,

0 = λ(pz − 1)pz − βE [λ′(p′z′ − 1)p′z′]− θλh

κp

(
w − θ − 1

θ
ap

)
, (29)

0 = z′ − (1 + µ)/p,

0 = v − pc.
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Noting that pz is the gross inflation rate, one can see that (29) is the forward-looking New-

Keynesian Philips curve (24). Moreover, in a private-sector equilibrium the agent’s and the

government’s budget constraints must be satisfied. These conditions read

0 = c [1 + s (v)] +
(1 + µ)(1 + qb′)

p
− 1 + b

p
− (1− τw

ap
)ah +

κ

2
(pz − 1)2 ,

0 =
(1 + µ)(1 + qb′)

p
− 1 + b

p
+

τwh

p
− g,

and can be combined to the aggregate resource constraint

0 = ah− c [1 + s (v)]− g − (κ/2) (pz − 1)2 .

Let us now recall the definition of the function γ(v) = 1 + s(v) + sv(v)v. By Walras’ law we

can replace the private agent’s budget constraint with the aggregate resource constraint. After

elimination of λ/p this gives us the following system of equations:

0 =
α

(1− τ)w
− cuc(c)

vγ(v)
, (30)

0 = βE

{
c′uc(c

′)
v′γ(v′)

[
1 + sv(v

′)v′2
]}

− cuc(c)

vγ(v)
(1 + µ), (31)

0 = βE

[
c′uc(c

′)
v′γ(v′)

]
− cuc(c)

vγ(v)
(1 + µ)q, (32)

0 = (pz − 1)pz − βE

[
uc(c

′)γ(v)

uc(c)γ(v′)
(p′z′ − 1)p′z′

]
− θh

κ

[
w

p
− (θ − 1)a

θ

]
, (33)

0 = c[1 + s(v)] + g + (κ/2) (pz − 1)2 − ah, (34)

0 =
(1 + µ)(1 + qb′)

p
− 1 + b

p
+

τwh

p
− g, (35)

0 = z′ − (1 + µ)/p, (36)

0 = v − pc. (37)

We can now define the functions µ̃ and r̃ as

µ̃(v, c, b′; a, g) = βE

{Cuc(C)vγ(v)

cuc(c)Vγ(V)

[
1 + sv(V)V2

]}− 1, (38)

r̃(v, c, b′; a, g) = βE

{Cuc(C)vγ(v)

cuc(c)Vγ(V)

}
, (39)

where the functions C and V are evaluated at (b′, z′, a′, g′) with z′ = [1 + µ̃(v, c, b′; a, g)] c/v.

Notice that (38) and (39) define µ̃ and r̃ only implicitly. Furthermore, using (37) and the
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aggregate resource constraint (34), we can write labor supply in a private-sector equilibrium as

h̃(v, c; z, a, g) =
1

a

{
c[1 + s(v)] + g +

κ

2

(vz

c
− 1

)2
}

. (40)

Notice further that equation (33) determines the real wage as

w

p
=

(θ − 1)a

θ
+

κ

θh

{
(pz − 1)pz − βE

[
uc(c

′)γ(v)

uc(c)γ(v′)
(p′z′ − 1)p′z′

]}
,

such that we can write the equilibrium wage as a function

w̃(v, c, b′, z′; z, a, g) =
(θ − 1)va

θc

+
κv

θc

{(vz

c
− 1

) vz

c
− βE

[
uc(C)γ(v)

uc(c)γ(V)

(Vc

vC [1 + µ̃(·)]− 1

) Vc

vC [1 + µ̃(·)]
]}

h̃(·)−1. (41)

Finally, from (30) we have

τ̃(v, c, b′, z′; z, a, g) = 1− αvγ(v)

cuc(c)w̃(·) . (42)

Combining (40), (41), and (42), we can construct a function T̃ , which summarizes the govern-

ment’s equilibrium real labor tax revenue, given choices for v, c, b′, z′, and given the states z,

a, and g. This function is given by

T̃ (v, c, b′, z′; z, a, g) =
cτ̃(·)w̃(·)h̃(·)

v
.

In the next step, we introduce again the government’s continuation value function. In analogy

to the flexible price environment, this function is recursively defined by

U(b′, z′, a′, g′) = u(C(b′, z′, a′, g′))− αH(b′, z′, a′, g′)

+ βEU(B′(b′, z′, a′, g′),Z ′(b′, z′, a′, g′), a′′, g′′),

where C, H, B′, and Z ′ are the solution to the private-sector equilibrium conditions under sticky

prices and for given policies.

Having introduced the function T̃ and the continuation value function U , the current govern-

ment seeks to maximize the objective function

u(c)− α

a

{
c[1 + s(v)] + g +

κ

2

(vz

c
− 1

)2
]

+ βEU(b′, c[1 + µ̃(·)]/v, a′, g′)
}
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with respect to c, v, and b and subject to

T̃ (·) +
c

v
[µ̃(·) + r̃(·)b′ − b]− g = 0. (43)

The first-order conditions associated with this problem are

− uc(c) +
α

a

[
1 + s(v)− κ

(vz

c
− 1

) vz

c2

]
=

ηv

c

{
T̃c(·) +

µ̃(·) + r̃(·)b′ − b

v

+
c [µ̃c(·) + r̃c(·)b′]

v

}
− βκE

[
α

a′

(
v′z′

c′
− 1

)
v′

c′

]
1 + µ̃(·) + cµ̃c(·)

v
,

α

a

[
csv(v) + κ

(vz

c
− 1

) z

c

]
=

ηv

c

{
T̃v(·)− c [µ̃(·) + r̃(·)b′ − b]

v2
+

c [µ̃v(·) + r̃v(·)b′]
v

}

+ βκE

[
α

a′

(
v′z′

c′
− 1

)
v′

c′

]
c

v

[
1 + µ̃(·)

v
− µ̃v(·)

]
,

βEη′ =
ηv

c
T̃b′(·) + η [r̃(·) + µ̃b′(·) + r̃b′(·)b′]− βκE

[
α

a′

(
v′z′

c′
− 1

)
v′

c′

]
cµ̃b′(·)

v
,

where ηv/c is the multiplier attached to the government’s implementability constraint. Together

with (43), these first-order conditions fully characterize the Markov-perfect equilibrium. Finally,

notice that when κ = 0, then T̃b′ = 0 and the equilibrium conditions boil down to the flexible

price conditions (19)-(21).
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