Applied Data Analytics

Statistics — Dispersion & concentration

Variance and standard deviation

Hans-Martin von Gaudecker and Aapo Stenhammar

Describe a DataFrame

df.describe().round(2)

Dispersion	count	mean	std	min	25%	50%	75%	max
Small	100000	0	1	-4.27	-0.67	-0	0.67	4.43
Large	100000	-0.01	1.5	-7.07	-1.01	-0	1	6.39

Variance and standard deviation

• The variance of a sample is the average squared deviation from the sample mean

$$s^2=rac{1}{n-1}\sum_{i=1}^n(x_i-\overline{x})^2$$

where
$$\overline{x} = rac{1}{n} \sum_{i=1}^n x_i$$
 is the sample mean

• The standard deviation is the square root of the variance

$$s=\sqrt{s^2}$$

Degrees of freedom

	Α	В		Α	В
	2	1		2	1
	4	3		4	3
	6	8		?	?
Mean	?	?	Mean	4	4

Sum of squared devs., Var., and Std. Dev.

Α	(A - 4)²	В	(B - 4) ²
2	4	1	9
4	0	3	1
6	4	8	16
SSD	8	SSD	26
Variance	4	Variance	13
Std. Dev.	2	Std. Dev.	3.6

Pandas reductions

df.var()

 ${\tt df.std()}$

Some properties of the variance

- Linear transformations: if $y_i = a + b \cdot x_i$, then

$$s_y^2 = b^2 s_x^2$$

 Can be calculated as the difference between the average sum of squares and the squared mean:

$$s^2=rac{1}{n-1}\sum_{i=1}^n(x_i-\overline{x})^2=rac{n}{n-1}\left(\overline{x^2}-\overline{x}^2
ight)$$