Applied Data Analytics

Descriptive Statistics

Histograms

Hans-Martin von Gaudecker and Aapo Stenhammar

Frequency distributions

A frequency distribution is a table that shows the frequency of various outcomes in a sample.

Categorical Data

Raw data

	cat
0	С
1	a
2	b
3	a
4	b
5	b

Frequency distribution

cat	count
b	3
а	2
С	1

Histogram

Better (for categorical data)

Continuous data

Raw data		Fr	Frequency distribution		
	cont		cont	count	
0	1.57		0.09		1
1	0.09		0.35		1
2	1		1		2
3	2.9		1.25		1
4	1.25		1.57		1
5	1		2.15		1
6	0.35		2.3		1
7	2.3		2.9		1
8	2.15				

Continuous data, binned

Raw data

Frequency distribution

	cont	cont_binned	count
0	1.57	[0,1)	2
1	0.09	[1,2)	4
2	1	[2,3)	3
3	2.9		
4	1.25		
5	1		
6	0.35		
7	2.3		
8	2.15		

Histogram

Defining a bin

Formally, you just count observations that fulfil a certain condition:

$$\operatorname{count} = \sum_{i=1}^N 1\{\operatorname{lb} \leq x_i < \operatorname{ub}\}$$

where $1\{\cdot\}$ is the indicator function, i.e.,

- it is 1 when the condition is fulfilled
- and 0 otherwise

Conditions for a histogram

$$\mathrm{count} = \sum_{i=1}^N 1\{\mathrm{lb} \leq x_i < \mathrm{ub}\}$$

- Choose the set of all (lb,ub)-pairs so that each observation is counted exactly once, i.e.,
 - ullet Minimum and maximum of $x_i,\ i\in\{1,...,N\}$ are included
 - Bins are non-overlapping and there are no gaps
- Equal width bins are crucial for honest communication

Discrete data, i.e., integers

- Plotly defaults to treating them as continuous data
- Prerequisite for that being sensible: Data is ordered and gaps are meaningful (e.g., age in full years)
- If you need to treat them as categorical, you first count values and then make a bar chart from the resulting Series.