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Abstract

We present a model that links the opacity of an asset to its liquidity. While low opac-

ity assets are liquid, intermediate levels of opacity provide incentives for investors to

acquire private information, causing adverse selection and illiquidity. High opacity,

however, benefits liquidity by reducing the value of a unit of private information to

investors. The cross-section of bid-ask spreads of U.S. firms is shown to be consistent

with this hump-shape relationship between opacity and illiquidity. Our analysis sug-

gests that uniform disclosure standards may be suboptimal; efficient disclosure can

instead be achieved through a two-tier standard system or by subsidizing voluntary

disclosure.
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1 Introduction

Opacity and illiquidity are two central concepts that are, however, rarely distinguished

from each other. Both arise from incompleteness of information. An asset can be said to be

opaque when agents generally have little knowledge about its pay-offs. By contrast, when

some agents know more than others about an asset, the asset tends to be illiquid because of

adverse selection problems. The difference between opacity and illiquidity thus boils down

to whether the incompleteness of information is of a public or private nature.

How can the two be related? At first, one would expect a positive link between opacity

and illiquidity. When there is more opacity, there is more scope for agents having different

information sets. Adverse selection should then be more pronounced and liquidity low.

This reasoning is consistent with common thinking among policy makers, regulators and

standard setters that disclosure is beneficial: more public information should deter wasteful

private acquisition of information and reduce the potential for information asymmetries

among investors.1

This argumentation, however, ignores the fact that private information is endogenous.

Gathering it is costly; hence it has to be profitable for investors to acquire it. The relation-

ship between opacity and liquidity will thus depend on the scope for private information

as well as on the incentives to acquire such information. It is not obvious why the value

of information should be higher for opaque assets. Casual observation also throws doubt

on an exclusively positive link between opacity and illiquidity. Many opaque assets are

frequently traded and have low bid-ask spreads. A case in point is the banking industry.

Banking is considered a very opaque business. Nonetheless, the major banks are heavily

traded and their stocks display high liquidity.

This paper presents a model that analyzes the link between opacity and liquidity. We

consider an investor who holds an asset that pays in certain states of the world. Opacity is

defined as the mass of states where it is (publicly) not known whether the asset pays out.

1For an overview of theoretical justifications for disclosure requirements see Leuz and Wysocki (2008),
Bushman and Landsman (2010), Leuz (2010) and Hermalin and Weisbach (2012). The evidence on the
benefits of dislosure is however mixed, see for example Leuz and Verrecchia (2000).
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The investor can decide how much he privately wants to learn about these states.2 Doing

so incurs a fixed cost per state. Following this, the state of the world becomes known. The

investor may be hit by a liquidity shock that forces him to sell the asset to the public.

Illiquidity arises at this stage since market participants anticipate that the investor will

sometimes trade opportunistically on his private information.3

For a completely transparent asset, there is no scope for private information. Such an

asset trades without an adverse selection discount and hence is liquid. At the other extreme,

for a very opaque asset the scope for private information is maximal. At the same time,

however, the incentives to acquire information are low. The reason is that because opaque

assets have a low value to the public, opportunistic asset sales based on private information

will fetch the investor only a low price, leading to low gains from such information. For a

sufficiently high level of opacity, it can be shown that it is never optimal to acquire any

information. Complete symmetry of information is preserved and the asset is liquid. At

intermediate values of opacity, however, the investor always acquires information and there

is adverse selection.4 A key prediction of the model is thus a hump-shape relationship

between opacity and illiquidity. Examining the cross-section of U.S. firms, we find this

prediction to be confirmed.

The main analysis considers an asset of given opacity. However, since opacity affects

information acquisition and liquidity, an investor’s valuation of an asset will depend on its

opacity. This in turn affects the incentives of originators of assets. We turn to the question

of how much information an original owner of an asset wants to publicly release, prior to

selling to the investor. The issuer’s decision is guided by two motives. First, he wants to

2Learning about a state can be thought of as understanding how the asset’s pay-off depends on a certain
factor, e.g., an oil price change or a recession. For more opaque assets, the set of states that would need to
be analyzed is naturally larger.

3The notion of liquidity in our analysis is along the lines of e.g. Glosten and Milgrom (1985): An asset
is deemed to be illiquid if the price at which it is traded reflects private information concerns (while in
Glosten and Milgrom (1985) this is because of the bid-ask spread, in our analysis this is because there is a
difference between the expected value of the asset absent information acquisition and the market price).

4The seminal paper by Grossman and Stiglitz (1980) considers the incentives of agents to learn about
the expected pay-off of an asset. A lower quality of the signal reduces the incentives to become informed,
leading to equilibrium prices reflecting fundamentals less well. While in Grossman and Stiglitz (1980)
information incompleteness arises with respect to the expected pay-off of the asset (the “fundamentals”),
in our analysis of opacity the latter is known. Instead, learning takes place about the mapping between
(future) states of the world and pay-offs.
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sell an asset that maximizes value to the investor, as this will benefit him through a higher

sale price. Second, he wants to minimize costs associated with releasing information to the

public (arising, for example, because third parties have to be hired to certify information).

Two conclusions can be drawn from the analysis of endogenous opacity. First, it can

be (privately and socially) optimal to issue opaque assets in order to deter information

acquisition. This may explain why opacity in the financial system has remained high,

despite the enormous improvements in information dissemination technologies in recent

decades (which should have, by themselves, led to much better public information and

lower opacity). It can even be desirable to increase an asset’s opacity beyond its natural

level (for example, by drawing up complex securitization structures). Second, issuers may

privately choose opacity levels that are higher than the ones that are desirable for the

financial system. This occurs because issuers have to fully bear the cost of reducing opacity,

but only partially internalize any benefits for other agents.

There are several implications for policy. Uniformly mandated increases in disclosure

are not desirable because of the non-monotonic nature of the relationship between opacity

and liquidity (which coincides with welfare in our setting). In principle, a two-class policy

where regulators distinguish between assets according to their opacity can achieve efficiency.

For assets that are fairly transparent, the standard policy prescription applies that more

disclosure increases efficiency. However, assets that are relatively intransparent to start

with should not be forced to higher levels of transparency. Such a conditional transparency

regime, however, seems informationally demanding for the regulator.5 A better approach is

to provide subsidies for issuers to voluntarily increase disclosure. Subsidies are efficiency-

enhancing regardless of a firm’s opacity level since they directly address the source of

inefficient information choices of issuers (the positive externality of information for other

agents in the financial system). They may, for example, take the form of industry bodies

sponsoring infrastructure for services that promote transparency, such as public information

repositories.

5Although differentiated disclosure policies exist in practise (for example, different standards for listed
firms).
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1.1 Related Literature

Our setting is closely related to recent literature which has analyzed how security design

affects information acquisition by investors. While the focus in the present paper is on

the question of how much information should be released about an asset, the security

design literature studies how an asset’s pay-off streams can be separated into different

parts to make information acquisition less attractive. A central theme in this literature is

the optimality of debt contracts: because debt has a flat payoff for most of the domain

(and otherwise its payoff is determined by limited liability), it minimizes the benefits of

acquiring private information.6 Dang et al. (2013a) formally introduce the concept of the

information sensitivity of a security and show in a model of strategic security design and

multiple trading rounds that debt contracts minimize market participants’ incentives to

acquire information. Using a generalized information structure, Yang (2012) finds standard

debt to be least sensitive to private information, irrespective of the composition of the

underlying asset pool. Farhi and Tirole (2014) highlight the importance of commonality of

information. They show that for an asset to be liquid it is important that information is

symmetric. This can be achieved either by common knowledge or by common ignorance.

In our paper, informational symmetry arises either for very transparent assets (common

knowledge) or for very opaque assets (because of common ignorance). Intermediate levels

of opacity, in contrast, lead to one-sided information and cause adverse selection.

There is a small but growing literature that analyzes asset opacity. Kaplan (2006)

examines a bank’s choice of whether to release information about assets at an interim stage.

The paper shows that it can be efficient for the bank to commit to keep information secret,

even though this forces the bank to offer non-contingent deposit contracts ex-ante. The

reason is that the cost of revealing negative information at an interim stage can outweigh

the benefits of positive information. Sato (2014) considers a setup with opacity at the fund

and the asset level. He finds that opaque funds invest in opaque assets and that such funds

6The literature mostly considers situations where only one party in a potential trade can become in-
formed, in which case information acquisition is welfare-reducing. Farhi and Tirole (2014) study informa-
tion acquisition on both sides. In this case, information acquisition can improve liquidity as it can increase
symmetry across agents.
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can trade at a premium. The reason is that managers of opaque funds inflate investors’

beliefs about future returns by (secretly) overinvesting in opaque assets and levering up.

Pagano and Volpin (2012) analyze a model where investors differ in their ability to

process information. Releasing information about assets is subject to a trade-off. On the one

hand, information decreases primary market liquidity because it induces a “winner’s curse”

problem for unsophisticated investors who cannot parse information. On the other hand,

information increases secondary market liquidity as information not released by issuers

creates scope for private information acquisition and hence leads to adverse selection. The

second channel is also present in our model. While in Pagano and Volpin (2012) information

is of an all-or-nothing nature, in our model information is continuous. This allows us to

show that the value of a unit of information can vary with the asset’s level of opacity, which

is the source of the opacity benefit in our paper.

Carlin et al. (2013) focus on an issue similar to the differential information processing in

Pagano and Volpin (2012). They consider an experimental setting in which the complexity

of an asset is varied. Complexity relates to the computational difficulty required to obtain

information about the asset’s payoff. Carlin et al. (2013) find that when subjects are aware

that other subjects are more adept at performing the required calculations, adverse selection

becomes pronounced. This is consistent with agents anticipating a lower degree of common

information present in markets.

While in our setting there is no social benefit to information, recent papers by Monnet

and Quintin (2015) and Dang et al. (2013b) have shown that transparency (i.e. more

information) can lead to more efficient interim decisions.7 However, there is also a cost, as

investors may be forced to liquidate their positions in response to negative information. In

the presence of secondary markets that are not always liquid, the benefits of good interim

information cannot be fully capitalized by investors. Transparency is shown to mitigate

this problem, at the cost of allocative efficiency.

The remainder of the paper is organized as follows. Section 2 sets up the baseline model

7Boot and Thakor (2001) provide an analysis of disclosure of various types of information that are all
beneficial (as it reveals agent’s types). They show that in equilibrium firms find it beneficial to disclose all
types of information.
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for the analysis of the link between opacity and illiquidity. Section 3 examines the cross-

section of U.S. firms to see whether it exhibits a hump-shape relationship. In Section 4 we

consider the incentives of asset originators. Section 5 discusses some policy implications.

Section 6 concludes.

2 The Model

We develop a simple model of information acquisition with the key feature that both the

cost and value of information depend on an asset’s opacity. In the model, an investor can

learn about an asset of varying degrees of opacity. This learning is not about the asset’s

expected pay-off (which is the focus of Grossman and Stiglitz (1980) and several other

papers) but about how it pays in different states of the world. This can be likened to an

investor (or the risk manager of a financial institution) exerting effort in analyzing how an

asset performs under several scenarios (e.g., an oil price shock, deflation or an economic

downturn). For opaque assets, it will be inherently more costly to reach the same level of

information than for transparent ones.

Take for instance the stock of Coca-Cola versus the stock of JP Morgan. The business

model of Coca-Cola is simple and transparent; it is hence easy to predict how its stock will

perform in a set of circumstances. By contrast, the operations of JP Morgan are extremely

complex, involving a wide set of activities (such as trading in derivatives, or holdings

of securitization products) which are often difficult to understand even on an individual

basis. Learning about how JP Morgan’s business will perform under different circumstances

is hence difficult and requires substantial effort by investors. Another example is credit

products. A mezzanine tranche formed from a portfolio of credits, for instance, is much

more opaque than an exposure to a single name. As a result, learning about its pay-offs

in different states (for instance, its dependence on a clustering of default events in the

economy) is more demanding. Conglomerates can also be seen as opaque firms, as opposed

to standalone firms, as it will be more challenging to understand how they are impacted by
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shocks.8

The economy consists of an investor I and an agent M , representing the market. There

are two dates, t = 1, 2. The preferences of both agents are linear and given as follows:

• The investor’s utility depends on whether she is patient or impatient. If patient

(occurring with probability π ∈ (0, 1)), the investor can consume at both dates:

U I = CI
1 + CI

2 . If impatient, the investor derives only utility from consumption at

date 1: U I = CI
1 . The investor privately learns her type (patient or not) at t = 1

and this information is not verifiable.

• The market agent consumes at both dates: UM = CM
1 + CM

2 .

The endowments of the agents are as follows. At t = 1, the investor holds an asset

which pays off at date 2. This asset returns one in a subset L (of mass l ∈ (0, 1)) of

uniformly distributed states of the world s ∈ S = [0, 1] and zero otherwise. Given the

uniform distribution, the unconditional value of the asset is hence l. While the set L is

unknown, its mass l is publicly known. The market agent has a cash endowment of wM > 1

at date 1.9 The agents hold no other endowments.

Given the allocation of endowments, it is natural that gains from trade can be realized.

If the investor turns out to be impatient at date 1, she can sell the asset to M . However,

reaping these gains is complicated by the opportunity for the investor to acquire private

information about the asset prior to trading: Acquisition of private information results in

adverse selection when trading with the market. The incentives to acquire information, in

turn, are affected by the asset’s opacity.

Opacity is modeled as follows. There is a set of states O containing the payoff states

(L ⊂ O). This set is publicly known. We refer to the mass of this set, o (∈ [l, 1]), as

the asset’s opacity. Maximum opacity (o = 1) arises when there is no information about

the set of payoff states. At the other extreme, if o = l, the precise set of payoff states is

8Consistent with this, Cohen and Lau (2012) provide evidence that it takes more time for a piece of
information to be incorporated in the price of a conglomerate.

9We abstract from issues that can arise because endowments are constrained (as in Dang et al. (2013b)),
which potentially lead to cash-in-the-market pricing.
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common knowledge and there is no scope for private information acquisition – the asset is

transparent. For o ∈ (l, 1), opacity is of an intermediate degree and there is incomplete

knowledge about payoff states. The more transparent the asset, the smaller o and the

more precise is the public information about the location of the payoff states, that is, the

circumstances under which the asset pays off. Note that opacity is distinct from the asset’s

ex-ante return and risk: the expected payoff is l and variance of the asset is l(1− l).

At the beginning of date 1, the investor has the option to acquire private information.

Specifically, she decides on an amount a (∈ [0, o− l]) of information to acquire. Following

this, nature reveals a random subset of states A of mass a from O for which the asset does

not pay off. Private information acquisition reduces the size of the set containing the payoff

states from o to o− a. There are proportional costs of acquiring information kI · a, where

kI > 0. We assume that these costs take intermediate values:

Assumption 1

πl(1− π)

1− πl
< kI < π.

This assumption ensures that information acquisition is nontrivial.10

The choice of a as well as the realization of the subset A are private to the investor and

are not verifiable. Following the investor’s information acquisition decision, the state of the

world s becomes available. Subsequently, the investor can sell the asset to the market. For

this we assume that the market posts a competitive price for the asset and the investor

decides whether or not to sell at this price.11

To focus the analysis, it is convenient to rearrange the states s of the world. Specifically,

we reorder states such that the payoff states are on [0, l], the public set of potential payoff

states is on [0, o], and the set of potential payoff states privately known to the investor is

[0, o − a]. In addition, agents no longer observe the exact state, but only the set in which

the state falls. If s > o, both investor and the market learn that the state of the world falls

outside the public set O, and hence that the asset does not pay off. If s ∈ (o−a, o], the state

10If costs are very low, full information would always be acquired, while sufficiently high costs deter
information acquisition.

11This avoids the use of price as a signal about the asset’s quality or the investor’s type. A competitive
price may, for example, arise if market participants compete by posting bid prices for the asset.
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of the world is in the public set of possible states of the world O, but not in the investor’s

private set. The investor privately learns that the asset does not pay, while the market only

learns that s is within the public set of potential payoff states of mass o. If s ≤ o− a, both

investor and market have incomplete knowledge about the payoff. The investor knows that

s is within the private set of payoff states, while the market only observes that the state is

within the public set.12

The timing of the model can be summarized as follows:

t

t = 1

(1) investor decides on extent
of information acquisition a

(2) information about s is publicly
revealed and investor privately
learns whether she is patient or not

(3) investor decides whether to sell asset
to market at competitive price

t = 2

(1) asset returns 1 iff s ∈ [0, l]

Figure 1: Timeline of the Baseline Model

2.1 Trade with the Market

To solve for an equilibrium of the game, we first analyze the final stage in which the investor

has the opportunity to sell to the market. At this stage, public information about the state

s has been revealed. The public set of payoff states depends on the asset’s opacity level

and is given by [0, o]. Furthermore, the investor has potentially acquired information a;

her private set of payoff states is thus [0, o − a]. Denote by ã the market’s beliefs about

how much information the investor has acquired, and by p(ã, o) the competitive price given

these beliefs and the opacity level o. Given ã, the market forms posterior beliefs about the

value of the asset conditional on what drives the selling decision using Bayesian updating.

We first analyze the investor’s selling decision for a given price p. To rule out no-

12In other words, the market only recognizes states in the set [o, 1], while the investor recognizes states
in the set [o− a, 1].
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trade equilibria, we assume that the investor has a weak preference for selling when she

is impatient, and a weak preference for not selling when she is patient. We focus on pure

strategy equilibria.

The following cases arise depending on the realization of s. First, there is the trivial

case of s being outside the public set (s > o). Both the investor and the market know that

the asset does not pay off and trade is irrelevant. We can ignore this case for the analysis

of the trade equilibrium as trade, if it takes place, occurs at a price of zero.

Consider next the case of s being inside the public set (s ≤ o). If an investor is impatient,

she will sell regardless of price (given her weak preference for selling) since there is zero

utility from holding on to the asset. For a patient investor, the decision to sell depends on

whether the signal is in the private set. If the signal is outside the private set (s > o− a),

the investor knows that the asset is worthless. She will hence sell at any positive price. If

the signal is inside the private set (s ≤ o− a), the investor’s expected utility of keeping the

asset is l
o−a

. Taking into account the weak preference for holding on to the asset, she will

hence sell the asset if and only if the price p is larger than l
o−a

. Such a price, however, is

inconsistent with market rationality. To see this, note that l
o−a

is higher than the value of

the asset even without adverse selection (that is, when the investor only sells when she is

impatient). The market can hence never break even at this price and such a price cannot

prevail in equilibrium. It follows that when s ≤ o− a the patient investor does not sell the

asset.

We can summarize these results as follows:

Lemma 1 In equilibrium, the asset is offered to the market (when s ≤ o) iff

i) the investor is impatient, or

ii) the investor is patient and s is in her public set but outside her private set (s ∈

(o− a, o]).

We next solve for the price at which an asset is sold (in the case of s ≤ o). Since the

price is set competitively, the market breaks even in expectation. The price hence has to

be equal to the asset’s expected value (given beliefs ã) conditional on being sold. According
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to Lemma 1, the asset is sold either when the investor is impatient, or when she is patient

and the state is outside her private set. The first case occurs with probability 1−π and the

likelihood of the asset paying off in this case is l
o
, i.e., the ratio of the size of the payoff set l

to the size of the public set o. The second case, a patient investor with s outside her private

set, is perceived by the market to occur with probability π · ã
o
( ã
o
is the likelihood of the state

being outside the private set given beliefs ã about the extent of information acquisition).

The asset is worthless in this case. The expected value of the asset (conditional on being

sold) is hence
(1−π) l

o

1−π+π ã

o

. Rearranging yields the competitive price p(ã, o) given beliefs ã and

opacity level o:

p(ã, o) =
1− π

o− π(o− ã)
l. (1)

Note that for ã = 0 (that is, if the market believes there is no private information) we have

p(0, o) = l
o
. Furthermore, ∂p

∂ã
< 0 because if the market believes that the investor privately

acquired more information, it prices in more adverse selection as it becomes more likely

that a worthless asset is offered.

2.2 Information Acquisition

Consider a candidate for information acquisition a∗, and corresponding market beliefs ã.

For a∗ to constitute an equilibrium amount of information acquisition, it has to be the case

that a∗ maximizes the investor’s utility given that the market believes ã = a∗. We thus

have for a∗ that

a∗ = argmax
a∈[0,o−l]

u(a, a∗),

where u(a, ã) denotes the investor’s expected utility given that she chooses a level of infor-

mation acquisition a and the market holds beliefs ã.

We can derive u(a, ã) as follows. With probability 1 − o, the state of the world falls

outside the public set (s > o). In this case, the investor does not derive any utility from

owning the asset as it is common knowledge that the asset is worthless. With probability

o, the state of the world falls inside the public set (s ≤ o). The investor then sells whenever

she is impatient or when she is patient and the state is outside her private set (s ∈ (o−a, o]).
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The combined probability for this is 1 − π + π · a
o
and she obtains p(ã, o) from selling the

asset. When she is patient and the state is inside the private set (s ∈ [0, o − a]) she holds

onto the asset. This happens with probability π · o−a
o

and she receives (in expectation) l
o−a

from the date-2 return. Together with the information costs kI · a, her utility is thus

u(a, ã) = o

(
(1− π + π

a

o
)p(ã, o) + π

o− a

o

l

o− a

)
− kI · a. (2)

Note that when beliefs are consistent with actual information acquisition (ã = a), the above

simplifies to l − kI · a.

Differentiating with respect to a, we obtain the marginal gain from acquiring informa-

tion:
∂u(a, ã)

∂a
= πp(ã, o)− kI . (3)

Equation (3) shows that information acquisition trades off marginal benefits πp(ã, o) with

information acquisition costs kI . The benefits are derived as follows: By acquiring one

additional unit of information, the investor reduces her private set by one state. If this

state realizes, she knows that the asset is worthless. If she turns out to be patient, she will

hence sell and obtain p(ã, o), while before she would have held a worthless asset. Note that

the incentives to acquire information increase in the asset’s price.

The marginal benefits in (3) are constant as they do not depend on the amount of

information acquired (a). There are hence three cases to consider. If πp(ã, o)− kI < 0 (or

rearranging, if p(ã, o) < kI
π
), the marginal benefits are always outweighed by the marginal

costs. Zero information (a∗ = 0) thus maximizes investor utility. Likewise, if πp(ã, o)−kI >

0 (p(ã, o) > kI
π
), the marginal benefits outweigh the marginal costs and the highest possible

level of information acquisition (a∗ = o − l) maximizes utility. Finally, if p(ã, o) = kI
π
, the

investor is indifferent as to which level of information acquisition to choose. We can hence

summarize for the investor’s choice of information given beliefs ã:

13



argmax
a∈[0,o−l]

u(a, ã) =





0 if p(ã, o) < kI
π

[0, o− l] if p(ã, o) = kI
π

o− l if p(ã, o) > kI
π
.

(4)

This allows us to solve for equilibrium information acquisition. Note that higher opacity

reduces the price p for a given belief ã and hence the incentives to acquire information, see

(1). Define
¯
o as the critical opacity level which just leads to full information acquisition

(a∗ = o − l). Recall that in equilibrium, we have that a∗ = ã. Inserting ã =
¯
o − l into

p(ã,
¯
o) = kI

π
, we obtain after rearranging:

¯
o = πl+ π(1−π)l

kI
. Likewise, define ō as the critical

opacity which deters acquisition of any information. We obtain ō = πl
kI

by rearranging

p(0, ō) = kI
π
. For intermediate values of o , an interior equilibrium arises. By solving for ã in

the condition p(ã, o) = kI
π
, we obtain for the interior equilibrium that a∗ = ã = (1−π)

π
( πl
kI
−o).

Note that Assumption 1 ensures
¯
o < min{ō, 1}, which allows to summarize

Proposition 1 The equilibrium level of information acquisition a∗ is

a∗(o) =





o− l if o ≤
¯
o

(1−π)
π

( πl
kI

− o) if o ∈ (
¯
o, ō)

0 if o ≥ ō

(5)

with
¯
o = πl + (1−π)πl

kI
and ō = πl

kI
.

o

a
∗(o)

l o ō 1
0

a
∗(o)

Figure 2: Information Acquisition as a Function of o

Figure 2 shows equilibrium information acquisition a∗(o) as a function of an asset’s

opacity o. At o = l, the asset is fully transparent and it is not possible to acquire information
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(a∗ = 0). For values of o between l and
¯
o, the maximum feasible amount of information

is acquired (a∗ = o− l). In this range, opacity increases information acquisition, as higher

opacity increases the feasible amount. Beyond
¯
o, however, opacity reduces information

acquisition. This is until ō is reached, at which point no information is acquired. Note

that while in the figure we have that ō < 1, this is not necessarily always the case. If not,

information will be acquired even at full opacity.

What is the reason why opacity can deter information acquisition? Opaque assets have

a lower value when sold to the market. This can be appreciated from the fact that p (for

given ã) is declining in opacity (see Equation (1)). In our model this is caused by the fact

that the public set is large for opaque assets and hence a realization of s in this set becomes

less informative about payoffs. A lower market price p in turn means that learning about

a given number of states in the public set is less valuable as opportunistic sales by the

investor (ouccring when the asset is discovered to be) fetch then a lower price.

Note that the non-monotonic impact of opacity on information acquisition translates

also into a non-monotonic impact on liquidity as well as welfare. This is, first, because

information acquisition always lowers liquidity, and second, because information acquisition

is the only source of welfare losses in our setting.13

2.3 Robustness

In this section, we discuss several modifications of the model.

2.3.1 Random Discovery of the Payoff Interval

We have considered an information acquisition technology which is deterministic: The

investor eliminates non-paying states from the set of potential payoff states with certainty.

This has significantly simplified the analysis. Alternatively, the outcome of information

acquisition may be random. In particular, the investor may decide to analyze a specific

state and then find out whether the asset pays off in this state or not. Following this, she

13We revisit the welfare implications in Section 4 where we consider the endogenous determination of
opacity.
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may decide to acquire information about more states. A consequence is that the extent to

which opacity is eliminated becomes random: the investor may be lucky and discover the

payoff interval early on or she may be unsuccessful and decide to stop after having acquired

a certain amount of information. Another consequence is that the amount of information

acquired (and hence also the deadweight loss from information acquisition) becomes random

is well.

Appendix A analyzes an information technology with random discovery of states. The

results from the baseline model carry over in that information acquisition is first increas-

ing and then decreasing in opacity. There can also be interior equilibrium amounts of

information acquisition, where there is a threshold for information acquisition such that an

investor acquires information until this threshold is reached or until the pay-off interval is

discovered.

2.3.2 Learning about Loss States

What happens when information acquisition allows us to learn about the set of states where

the asset does not pay off? Suppose that – the exact opposite of the baseline model – the

asset pays off on [l, 1] but not on [0, l]. In addition, suppose that reducing opacity and

information acquisition also work in the opposite way: the owner’s opacity choice narrows

down the set of loss states to [0, o], while information acquisition further narrows it to

[0, o− a].

A difference to the baseline model is that the investor now benefits from states in which

he has positive private information about the asset. The intuition for this observation is

as follows (Appendix B contains the full analysis). Suppose that selling the asset yields

a given price p. Suppose a state s realizes in which the investor knows that the asset

pays off but the market does not (s ∈ [o − a, o]). A patient investor will then not sell the

asset and thus realize a return of 1, whereas she would have realized p without information

acquisition. Suppose next that a state of the world realizes where both investor and market

are uncertain about whether there is a pay-out (s ∈ [l, o − a]). Since the investor also

observes that this state is not within her private set of payoff-states [o− a, o], she perceives

16



a higher chance that the asset will not pay than the market. This will cause her to sell the

asset when patient. However, under symmetric information, the investor would have been

indifferent between selling and not selling so that no additional gains are incurred.

Information acquisition makes it more likely that a state realizes where the investor

has positive information about the asset. In such a state the investor will refrain from

selling the asset, while prior to information acquisition she would have sold the asset. A

consequence is that the gains from information acquisition are decreasing in the market price

p, the opposite to the case in the baseline model (see (3)). This eliminates the possibility for

interior choices of information acquisition. However, as shown in the appendix, it is still the

case that opacity lowers information acquisition at low opacity levels and that sufficiently

high opacity prevents information acquisition.

2.3.3 State-Dependent Information Acquisition Costs

The baseline model assumes that the cost of acquiring information is proportional to the

number of states which are analyzed. Implicit to this is that states have equal information

costs. Alternatively, information costs may differ across states. For example, it might

be easier to ascertain the value of an asset in the case of an inflationary shock, than for

instance in the event of a financial crisis. If costs are state-dependent, it becomes optimal

for an investor to first analyze cheaper states, resulting in increasing marginal information

acquisition costs. Intuitively, increasing costs make it more likely that we obtain an interior

equilibrium. Appendix C contains the analysis of increasing marginal costs, showing that

the qualitative results are the same as in the baseline model. In particular, the relationship

between opacity and information acquisition still follows a hump-shape.

It is critical, however, that the total cost of gathering information is higher when more

states are analyzed. To see this, suppose to the contrary that any level of information ac-

quisition incurs a fixed cost, independently of how many states are analyzed. The marginal

benefit from information once some information has been acquired (a > 0) is then strictly

positive (∂u(a,ã)
∂a

= πp(ã, o) > 0 from equation (3) for kI = 0). Hence there can no longer

be an interior equilibrium. The investor will hence either acquire no information or all
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information. This case corresponds to the technology of information acquisition considered

in Dang et al. (2013a) and Dang et al. (2013b).

2.3.4 Alternative Mechanism

There exists a second, independent, reason for why opaque assets may lower information

acquisition. It arises when the informational gain from a given amount of information

depends on opacity. A unit of information is conceivably less informative if an asset is

very opaque as there will then be large uncertainty even after the unit has been acquired.

To demonstrate, consider a situation where an asset is valuable to an agent only if it

meets a criterion in every state of the world. For instance, agents may have a subsistence

requirement c; reaching this level of consumption gives a utility of one, if it is not reached,

utility will be zero. Suppose an agent can acquire information about an asset (=project)

before deciding whether to undertake it (the alternative to investment being to store funds

to meet subsistence requirements). Clearly, the agent will only choose the asset if the

subsistence requirement is fulfilled in every state. This requires the agent to investigate

all states. Suppose that there are a discrete number o of opaque states and that in all

transparent states it is known that the asset pays at least c.14 Let the probability of a

pay-off in an individual state meeting the subsistence requirement be q ∈ (0, 1) and let

payoffs be independent across states. The likelihood of all states meeting the criterion is

then qo. The expected benefit from acquiring full information is given by qoc ·1−kIo, where

kI is the per-state cost of information acquisition. Dividing by o yields a benefit qo

o
c− kI of

acquiring a unit of information. This value of information is decreasing in opacity for two

reasons: First, for higher opacity o, the likelihood that the asset will eventually meet the

criteria is lower (qo is lower). Second, for higher o more states have to be inspected, hence

the gain per state is lower.

14If the latter is not the case, the asset is known to be worthless and hence there is also no incentive to
acquire information about it.
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3 The Cross-Section of Bid-Ask Spreads and Opacity

The model’s key prediction is that opacity encourages private information only up to a point.

Beyond this point, the relationship inverts, and opacity makes information acquisition less

attractive (see Figure 2). In this section we analyze firm-level data to see whether such a

pattern is consistent with the data.15

Following the theoretical contributions of Glosten and Milgrom (1985) and Kyle (1985),

private information leads to higher bid-ask spreads on a firm’s stock. Market makers need

to be compensated for the risk of trading with an informed party, leading them to widen

the bid-ask spread when they expect private information to be more prevalent. Empirically,

it is well documented that adverse selection is an important determinant of bid-ask spreads

(see e.g. Stoll (1989), Huang and Stoll (1997)). We hence proxy the amount of private

information on a firm using its stock’s bid-ask spread.16

The opacity of a firm is measured by the extent of disagreement among analysts about

future earnings (following Flannery et al. (2004) and others). The idea is that opaque

firms exhibit large potential for divergence among analysts, while disagreement is naturally

limited for transparent firms.17 The literature has suggested alternatives to the dispersion

proxy, which are however less appropriate for our purpose. For example, Morgan (2002) uses

rating splits as measure of firm opacity. While conceptually similar to analyst dispersion,

rating splits are not ideal in our context because testing our theory requires an opacity

measure that varies over a sufficiently large interval in order to be able to identify a non-

15Agarwal (2007) finds a hump-shape relationship between institutional ownership and liquidity. This
is interpreted as the presence of two offsetting effects. On the one hand, higher institutional ownership
leads to more informational assymmetries and hence lower liquidity. On the other hand, it leads to more
competition (among institutions) which should result in pricing better reflecting information and hence
higher liquidity. This exercise differs from ours in that we vary asset characteristics (opacity) rather than
characteristics of the holders of the asset.

16Given the one-sided nature of transactions in our model (i.e., the insider only sells), there is no ask-
price and private information will only be discounted into the bid-price. However, it is straightforward to
expand the model by allowing an investor to also buy assets, in which case there will be an ask-price as
well whose difference with the bid-price will reflect private information.

17Suppose that we enrich our model by “analysts” who all randomly learn about different parts of the
set of potential pay-off states. If polled about the asset value after the state s is revealed, there is a higher
chance of divergence among analysts for an opaque asset as it is then more likely that a state of the world
materializes in which private information matters.
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monotonic relationship (rating splits, in their simplest form, are a binary measure). Another

measure of opacity that is used in the literature is the number of analysts following a firm,

see e.g. Roulstone (2003). This measure does not measure underlying firm opacity itself,

but rather the extent to which analyst activity alleviates this opacity. We will account

for this in our analysis by including the number of analysts following a stock as a control

variable.

3.1 Data

We conduct an analysis of firms listed in the U.S. by relating their bid-ask spreads to

the dispersion in analyst forecasts. In our analysis, we control for factors that may affect

bid-ask spreads and which are unrelated to adverse selection.

We use the universe of firms contained in the CRSP database. Our measure of the bid-

ask spread is the average of a firm’s bid-ask spread in CRSP during the last three months of

2013 (October 2013-December 2013). In addition, we obtain various controls from CRSP:

the (log) of the market capitalization as a measure of firm size and the stock price itself

(both as of October 2013); the standard deviation of stock price returns, trading volume

and the standard deviation of trading volume averaged over the two years prior to October

2013.

The dispersion measure is obtained from the monthly summary statistics of the I/B/E/S

database. Specifically, we calculate dispersion as the average standard deviation of monthly

one-year ahead earnings forecasts. We calculate this average over the two years prior to

October 2013 (October 2011 until September 2013) and scale the standard deviation by

the mean earnings forecast. We deliberately choose a long horizon to capture structural

disagreement among analysts and to mitigate the impact of any short term events that

may cause analysts to diverge or converge in their forecasts, e.g. earnings announcements.

We also obtain the average number of analysts submitting forecasts following a firm from

I/B/E/S.

To be included in our final data set, we require firms to have complete information

during each month over which averages are computed and to have at least two analyst
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forecasts in any month (results are robust to requiring a higher number of analysts). As

there are outliers in both the spread and dispersion measure, we exclude observations in

the 1% tail in either variable. We also drop stocks with an average price of less than $5

(a common practice in the literature) because such stocks tend to trade infrequently. We

arrive at a final sample of 2067 observations. Table 1 in Appendix E contains the summary

statistics for all variables.

3.2 Results

We first summarize the relationship between spreads and analyst dispersion using rolling

windows which sort on dispersion. Figure 3 depicts the results for a window size of 500 (the

first datapoint is the mean spread of the sample of firms with the 500 smallest dispersion

measure, the second datapoint is the mean of the firms with a dispersion rank between

2 and 501, ...). Up to around window 800, there is a clear positive relationship between

dispersion and bid-ask spreads. However, for subsequent windows, the bid-ask spread drops

significantly. There is thus a non-monotonic relationship between the two variables – as

predicted by theory. Interestingly, for the extreme dispersion portfolios (starting at around

window 1300) the negative relationship ceases. Spreads no longer fall (and even increase

somewhat). A potential explanation for this is that at this point the degree of opacity

that prevents information acquisition is reached (ō in our model). We also note that the

range of spreads implied by dispersion changes is large. While portfolios with intermediate

dispersion have an average spread of around 0.028, spreads at the low and high end of the

dispersion spectrum around are at 0.024 and 0.023 (the standard deviation over the entire

sample is 0.03).

The rolling window analysis of Figure 3 is based on the raw data and is subject to the

disadvantage that for any window information from the observations outside the window

are completely ignored. This is an inefficient use of data and, among others, results in

a more variable relationship in the figure. In addition, it does not allow inferences for

individual specific dispersion levels, as each datapoint equally summarizes 500 data points.
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Figure 3: Rolling Windows Analysis of Bid-Ask Spreads

As an alternative, we analyze the relationship using Lowess smoothing.18 Figure 7 in

Appendix E presents the results, which confirm the rolling windows analysis. In particular,

there is a monotonically increasing relationship between dispersion and spreads up to the

36th dispersion percentile of firms, after which a negative relationship obtains. Around the

86th percentile, the lowest bid-ask spread and hence highest liquidity is reached. Beyond,

only smaller fluctuations in the liquidity proxy occur, consistent with opacity levels that

preclude information acquisition being reached.

Previous research has indicated that bid-ask spreads reflect other factors besides adverse

selection costs. It is thus important to control for these factors in the analysis. Addressing

this, we analyze bid-ask spreads which are net of these factors. For this, we first regress

bid-ask spreads on a set of controls and obtain residuals from this regression. We pro-

ceed to analyze the spread residuals using rolling window portfolios and Lowess smoothing

(Cleveland (1979)).

As a first control, we use size (the log of market capitalization) as larger firms are

expected to have smaller spreads independent of adverse selection considerations. Second,

we include the stock price, as higher price firms have a tendency to have larger spreads.

We also include proxies for inventory costs, as prior literature has emphasized that such

18Lowess smoothing (Cleveland (1979)) is based on a series of local regressions which are combined using
non-parametric smoothing.
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costs should result in wider spreads by market makers. A first (and inverse) proxy is trading

volume (scaled by market capitalization). Higher trading volume makes it easier for market

makers to adjust their inventory and should hence lead to lower spreads (see e.g. Chordia

et al. (2000)). A second proxy is the standard deviation of the stock return. This variable

captures firm risk, which has the effect of increasing the cost of holding inventory and

results in larger spreads. We also include the number of analysts following a stock. This

is because the presence of more analysts is considered to lead to more efficient information

transmission to other market participants, effectively reducing private information (see e.g.

Roulstone (2003)) and thus the spread. Finally, we include the standard deviation of the

daily trading volume (scaled by market capitalization) as firms with volatile trading volumes

require more market depth to provide smooth pricing (Roulstone (2003)).

Table 2 in Appendix E summarizes the results of a regression of the spread on these

controls. Several controls are significant: market capitalization, price, volatility of returns

and number of analysts. In each case, the coefficient of the significant variable has the

expected sign. We calculate the residuals from this regression to separate the components

that do not relate to adverse selection. Figure 4 depicts the rolling window analysis of

the residuals, using the same approach as in Figure 3. The pattern looks fairly similar to

the previous analysis, one noticeable difference being that there is now a more pronounced

peak in residual spreads (at around window 820). Figure 8 in Appendix E presents a locally

smoothed graph based on Lowess regressions which plots residual spread against dispersion

rank, again showing the hump-shaped relationship.

The basic result of a non-monotonic relationship between spreads and dispersion is

robust to various considerations. First, the length of the rolling window can be modified

within reasonable ranges without fundamentally modifying the observed pattern (similarly,

results are robust to variations in the bandwidth for the Lowess regression). Second, trading

volume (which we use here as a control) arguably can be considered as a measure of liquidity

itself. We hence re-run Figure 4 excluding trading volume in stage 1, with results unchanged.

Furthermore, the results are robust to exclusion of the number of analysts as control. This is

potentially important since the number of analysts may itself be a function of firm opacity,
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Figure 4: Rolling Windows Analysis of Bid-Ask Spreads Residuals

which may obscure the analysis. The analysis is also robust to requiring a high number of

analysts following a firm (i.e., a minimum requirement of 5, 7 or 10 analysts following the

firm). Finally, results are robust to different outlier treatments, such as including stocks

with a price of less than $5 and extending the tail cut-off for the spread and dispersion

measures.

We finish this section by stressing that this empirical exercise should not be taken

as a full test of the model. For one, opacity itself may be in endogenous variables. In

addition, the proxies for opacity and liquidity are crude and may capture also other asset

characteristics. Nonetheless, it is noteworthy that the data is broadly consistent with the

predictions of our model, in particular since our priors would have probably led us to expect

a monotonic relationship beween opacity and liquidity.

4 The Incentives of Asset Originators

In this section, we endogenize several characteristics of the asset held by the investor. For

this, we consider an original owner of the asset who can influence an asset’s characteristics

before selling it on to the investor. We first analyze the question of how much information

an owner wants to release about an asset prior to the sale. Following this, we consider

implications for which assets should be sold and how to sell them. Often originators (which
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may for instance be banks) have several assets for sale. In this case, they can decide

whether to sell them together or separately, and when they sell them together, which assets

to include in the bundle.

To analyze these questions, let us assume that there is an original owner of the asset,

O. Prior to selling the asset to the investor, the owner can choose (some) characteristics of

the asset. The choice of these characteristics affects future information acquisition by the

investor, and through this, the price at which the owner can sell in the primary market.

Incorporating the owner, the economy now consists of three agents: an owner O, an

investor I, and the market M . There are three dates (t = 0, 1, 2) of which date 1 and 2 are

identical to the baseline model. The preferences of agents are as follows:

• The owner derives utility from consumption at date 0 only: U0 = CO
0 .

• The investor can now also consume at date 0. His utility when patient is hence

U I = CI
0 + CI

1 + CI
2 and U I = CI

0 + CI
1 when impatient.

• The utility of the market is unchanged: UM = CM
1 + CM

2 .

At date 0, the owner is endowed with the asset. The owner has no other endowment

besides the asset. The investor has an endowment of wI (> l) at date 0; the market still

has an endowment of wM (> 1) at date 1.

The owner first decides on the characteristics of the asset. Following this, he can sell the

asset to the investor. For this, we assume that the owner and the investor bargain and that

the owner captures a fraction δ ∈ (0, 1] of the investor’s surplus. Following this, actions

proceed as in the baseline model. Figure 5 depicts the timeline.

4.1 Opacity

We first analyze the owner’s choice of opacity. We assume that the owner is perfectly

informed about the states in which the asset pays off. Before selling to the investor, he

decides how much of this information to release. Specifically, he discloses a set of states of

measure o which contain the payoff states. Releasing information comes at a cost for the
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t

t = 0

(1) owner chooses asset characteristics
(opacity, correlation, pool or split)

(2) owner and investor bargain over
asset price

t = 1

(1) investor decides on extent
of information acquisition a

(2) information about s is publicly
revealed and investor privately
learns whether she is patient or not

(3) investor decides whether to sell asset
to market at competitive price

t = 2

(1) asset returns 1 iff s ∈ [0, l]

Figure 5: Timeline of Extended Model

owner: reducing opacity from 1 to o incurs a proportional cost of kO · (1 − o) (kO > 0).19

Such costs arise because it is costly to collect information about an asset and to convey it

credibly to the other agents in the economy.

4.1.1 Efficient Opacity

Since the owner does not capture the full surplus whenever δ < 1, his choice of opacity may

differ from the welfare maximizing one. We first solve for the welfare-maximizing opacity

level and subsequently contrast it with the owner’s opacity choice.

From date 1 onwards, the setup is identical to the model of fixed opacity; trading and

information acquisition are still characterized by Lemma 1 and Proposition 1. We now

analyze the level of opacity that maximizes welfare. Given linearity of utility, (utilitarian)

welfare is simply the expected sum of resources in the economy that are available for

consumption. Welfare thus consists of the endowments, wI + wM , the asset’s expected

payoff, l, minus the cost of reducing opacity kO · (1 − o), minus the cost of acquiring

information kI · a
∗(o):

W (o, a∗(o)) = wI + wM + l − kO · (1− o)− kI · a
∗(o). (6)

Welfare is hence maximized by minimizing the sum of the two costs in the economy.

The opacity choice has two effects on welfare. There is the direct cost of opacity reduc-

19A richer model could allow assets to differ with respect to fundamental opacity, that is, the level of
opacity before any efforts by the owner to reduce opacity.
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tion kO · (1 − o) incurred by the owner. Furthermore, opacity affects date-1 information

acquisition a∗(o) and hence the information acquisition costs. Two cases arise. If ō ≤ 1,

information acquisition can be deterred by leaving the asset fully opaque, that is setting

o = 1 (see Proposition 1). As this induces neither information acquisition (and associated

costs) nor costs of opacity reduction; the first best is reached.

If ō > 1, this is not possible. In this case, the problem can be broken down as fol-

lows. First, choosing an opacity level that leads to partial information acquisition (that is,

choosing an o on [
¯
o, 1)) such that a∗(o) ∈ (0, o− l) is never optimal. A completely opaque

asset (o = 1) would dominate this choice as it would entail less information acquisition

(recall that information acquisition is decreasing in opacity in the interior range) and also

no opacity reduction cost. Second, when an opacity level of [l,
¯
o) is chosen, all possible

information is acquired (a∗(o) = o− l) and welfare is given by

W (o, a∗(o)) = wI + wM + l − kO · (1− o)− kI · (o− l). (7)

Equation (7) shows that optimal opacity depends on which cost parameter is larger. If

information is more costly (kI > kO), welfare is maximized by choosing the smallest opacity

in the range: o = l. If this is not the case (kI ≤ kO), the optimal choice would be to choose

the largest opacity in the range: o =
¯
o. However, as previously discussed,

¯
o is dominated

by a completely opaque asset (o = 1).

It follows that to find the optimal opacity level o whenever ō > 1, one has to compare

welfare for a fully transparent and a fully opaque asset ( o = l versus o = 1). This boils

down to comparing the cost of fully eliminating opacity, kO ·(1− l), with the cost of investor

information acquisition that arises for an entirely opaque asset, kI · a
∗(1).

Summarizing:

Proposition 2 Selling an opaque asset (o∗ = 1) maximizes welfare if

(i) this deters information acquisition (ō ≤ 1), or

(ii) kI · a
∗(1) < kO · (1− l).

Otherwise, selling a fully transparent asset maximizes welfare (o∗ = l ).
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There are three important messages. First, it can be optimal to sell a fully opaque

asset – independent of the magnitude of opacity reduction costs kO. This is because under

certain conditions, full opacity prevents any information acquisition by the investor. Second,

intermediate degrees of opacity are undesirable as such opacity levels induce the investor to

acquire costly information. Third, if the costs of opacity reduction are sufficiently small, it

can be optimal for the owner to sell a fully transparent asset, which precludes information

acquisition.

Adverse selection costs: Even though there is adverse selection at the trading stage

(since a patient investor sells when he has negative private information), there are no direct

welfare consequences of this in our model. This is because the impatient investor and the

market have identical marginal utilities of consumption. A lower market price resulting

from adverse selection thus does not affect the gains from trade (the equation for welfare

does not contain the price). If an impatient investor were to have higher marginal utility

than the market, this neutrality no longer obtains. Appendix D analyzes this case, showing

that information acquisition then has an additional, negative, effect on welfare through its

effect on the equilibrium price. This, however, does not affect the key results. In particular,

the hump-shaped relationship between opacity and information acquisition is still obtained.

4.1.2 The Owner’s Choice of Opacity

The owner maximizes the price at which he can sell the asset to the investor, minus any

cost incurred by him. Given that the investor’s surplus is l−kI ·a
∗(o), the owner maximizes

WO(o, a
∗(o)) = δ (l − kI · a

∗(o))− kO · (1− o). (8)

The owner thus minimizes a combination of costs of opacity reduction and information

acquisition costs. However, his objective function is not identical to the social one as he

only internalizes a fraction δ of the investor’s information acquisition costs.

Similar to the previous section, the solution can be derived as:
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Proposition 3 The owner sells a fully opaque asset (o = 1) if

(i) this deters information acquisition (ō ≤ 1), or

(ii) δkI · a
∗(1) < kO · (1− l).

Otherwise, he sells a fully transparent asset (o∗ = l).

Proof. The owner’s opacity choice mirrors the one in the baseline model. If 1 > ō, in-

formation acquisition can be deterred and the owner can avoid costs entirely by choosing

full opacity (o = 1). If this is not the case, he chooses either full opacity or full trans-

parency. The respective utilities from these choices are WO(1, a
∗(1)) = δ (l − kI · a

∗(1)) and

WO(l, a
∗(l)) = δOl− kO · (1− l). He hence chooses full opacity iff δkI · a

∗(1) < kO · (1− l).

This yields the following corollary

Corollary 1 The owner chooses an opacity level that is inefficiently high if and only if

δkI · a
∗(1) < kO · (1− l) < kI · a

∗(1). Otherwise his choice of opacity is efficient.

Proof. Follows from comparing condition (ii) in Proposition 2 and Proposition 3.

The intuition is clear. Since the owner incurs transparency costs fully but only internal-

izes a fraction of the investor’s information acquisition costs, he has comparatively lower

benefits from outcomes where transparency is high and information acquisition low.20 He

hence may not sell a transparent asset even when transparency maximizes welfare.21

Fundamental and effective opacity: The effective opacity of an asset (that is, the

opacity of an asset when sold to the investor) will in practice consist of two factors. First

it consists of the fundamental opacity of the asset, determined by its business character-

istics. This was the focus of the analysis in the baseline model. For example, firms in

certain industries are intrinsically more opaque. Large and complex firms will also have a

20This resembles the hold-up problem: The originator has an opportunity to increase the rents available
to both the investor and himself by reducing opacity. However, he is only able to extract parts of the
benefits, which potentially does not suffice to compensate her for the (non-contractible) costly opacity
reduction, which may lead to social inefficiency in the unregulated equilibrium.

21Note that a sharing of rents between the investor and the market in the secondary trading stage does
not lead to any bias in the owner’s opacity choice as it does not create a wedge with the welfare maximizing
level of opacity.
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fundamental tendency towards higher opacity. Second, there is the opacity choice of the

owner (which we focused on in this section). This choice can be understood as efforts by

the owner to reduce opacity below its fundamental opacity. In cases where such efforts

are not taking place, effective opacity may approximate fundamental opacity. In addition,

reaching a certain level of transparency will be more costly when initial opacity is high. In

practice we would thus expect to observe a wide range of levels of effective opacity, with

higher levels generally corresponding to a higher fundamental opacity.

4.2 Correlation

Suppose an owner wants to sell a number of assets, for instance, through a securitization.

Should he include correlated or uncorrelated assets in the sale? And does this decision

depend on the characteristics of the assets available?

To analyze this, we consider the following modification of the model. At t = 0, the

owner is endowed with two pools of assets, each containing x (x ≥ 2) assets of fixed opacity

o. The assets in each pool are individually identical to that of the baseline model: an asset

pays 1 in a mass l states of the world and zero otherwise. The investor can narrow down

the set of pay-off states for each individual asset by incurring cost a. The only difference

between the two pools is that in the first pool, assets pay off in exactly the same states of

the world. In the second pool, the payoff-states are independently distributed across assets.

At t = 0 the owner decides which pool of assets to sell. This choice is public information.

At t = 1 the investor can acquire information about each asset in the pool and subsequently

sell assets to the market. We assume that assets are sold individually to market participants

and that each market participant cannot observe how many assets in total the investor is

selling. To focus the analysis, we analyze in the following the case of δ = 1, in which case

there is no conflict between the owner’s incentives and the welfare maximizing outcome.

Suppose first that the owner chooses to sell the pool consisting of correlated assets.

At the trading stage, the investor has to decide for each individual asset whether or not

to sell it. The market has formed beliefs about information acquisition and since assets

are identical, these beliefs boil down to a single parameter ã about the investor’s private
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information set [o − ã, o]. The decision whether or not to sell is identical to the baseline

model, but now applies to x-assets at the same time. That is, the investor will sell all

assets whenever she is impatient or when she privately knows that the assets are worthless

(s ∈ [o− a, o]).

At the beginning of t = 1, the investor decides how much information to acquire about

each asset. Since assets are perfectly correlated, it is strictly optimal to acquire information

about one asset only. The investor thus has a single choice a, as in the baseline model.

However, acquiring information about one asset now provides additional benefits: Because

of perfect correlation, the investor learns about several assets at the same time. Similar to

Equation (2), we can write the utility of the investor as

u(a, ã) = x · o

(
(1− π + π

a

o
)p(ã, o) + π

o− a

o

l

o− a

)
− kI · a. (9)

From this we can derive the investor’s optimal information acquisition:

Proposition 4 The equilibrium level of information acquisition for the correlated pool of

assets is

a∗C =





o− l if o ≤
¯
oC

(1− π)(x l
kI

− o
π
) if o ∈ (

¯
oC , ōC)

0 if o ≥ ōC

. (10)

with
¯
oC = πl + x

π(1−π)l
kI

and ōC = x lπ
kI
.

Proof. Analogous to Proposition 1.

Compared to the sale of a single asset, information acquisition now tends to be higher.

First, the threshold opacity level above which the investor does not acquire information

is higher (ōC > ō). Second, information acquisition in the interior cases is always higher

(a∗C > a∗ for given o). The reason for this is that since information can be applied to several

assets, it becomes more attractive to acquire information.

Suppose next that the owner has sold uncorrelated assets. At the trading stage the

market will again have beliefs ã about the level of private information for each asset. These

beliefs will be asset-independent due to symmetry of the setup. The trading stage for each
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asset is hence the same as in the baseline case. Consequently, information acquisition for

each individual asset is also unchanged and given by a as laid out in Proposition 1. Total

information acquisition, however is x · a∗ .

We can now turn to the owner’s choice of which assets to sell. Since the owner only

consumes at t = 0, he does not care about the assets that are retained.22 He will hence sell

the pool that obtains the highest price, which will be the one with the lowest information

cost. The owner’s problem is thus to identify the pool that induces the lowest amount of

private information. This choice will be subject to a basic trade-off. The incentives to

acquire information for an individual asset are stronger in the correlated pool, as shown

above. This speaks for the uncorrelated pool. However, for a given amount of information

acquired about an asset, total costs are higher in the uncorrelated pool because information

is then acquired about each asset individually.23

The consequences for the owner’s decision are as follows. When information acquisition

is sufficiently unattractive (o ≥ ōC), there will be no information acquisition for either

pool and the owner is indifferent between the pools. When ō < o < ōC , there will be

information acquisition in the correlated pool only; hence the uncorrelated pool is preferred.

For lower levels of opacity (o < ō), information is acquired in both pools. In this case

the above trade-off comes into play. If o >
¯
oC (that is, there is incomplete information

acquisition in the correlated pool), an uncorrelated pool still maximizes welfare. This

can be seen by noting that interior information acquisition in the correlated pool, a∗C =

(1 − π)(x l
kI

− o
π
), is always higher than in the uncorrelated pool, xa∗ = x(1 − π)( l

kI
− o

π
).

However, for o that is sufficiently below
¯
oC , information costs in the uncorrelated pool

dominate (information acquisition in the correlated pool even decline because they are

then already at their maximum feasible level, o− l). The critical opacity level at which this

22If the owner could also consume at t = 2, he would still be indifferent as to which assets are retained
as both pools have the same expected payoff.

23Dang et al. (2013b) also analyze the impact of diversification on the incentives for information acqui-
sition. They show that selling a diversified portfolio discourages private information acquisition by hiding
private information. They do this in a setting where the cost of acquiring information is independent of the
security design. Our model of endogenous information acquisition shows that while incentives to acquire
information are indeed lower in the case of uncorrelated assets, correlated pools avoid duplicating private
information production and may thus be preferred.
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happens is determined by the condition o− l = xa∗(o). Rearranging yields:

ô =
x(1− π) π

kI
+ 1

x(1− π) + 1
l. (11)

o

x · a∗(o) and a
∗

c
(o)

l o ô o
C ō ōC 1

0

uncorrelated assets: x · a∗(o)

correlated assets: a
∗

c
(o)

correlated assets preferred uncorrelated assets preferred

Figure 6: Information Acquisition as a Function of o

Figure 6 illustrates the different cases. We can summarize:

Proposition 5 Consider the owner’s choice to sell a correlated or uncorrelated pool of

assets.

1. If o ≤ ô, the owner prefers to sell a correlated pool of assets.

2. If o ∈ (ô, ōC), the owner prefers to sells an uncorrelated pool of assets.

3. If o ≥ ōC, the owner is indifferent between both pools.

In their review of securitization practices, Gorton and Metrick (2012) identify the lack

of diversification as one of the main puzzles: “The choice of loans to pool and sell to the

SPV also remains a puzzle. Existing theories cannot address why securitized-loan pools are

homogeneous – all credit cards or all prime mortgages, for example. The existing theory

suggests that credit card receivables, auto receivables, mortgages, and so on should be in

the same pool – for diversification, but this never happens.” Proposition 5 shows that selling

homogenous (or correlated) assets can be beneficial for the originator. The reason is that

this lowers the total cost of private information acquisition because information acquisition

costs do not need to be spent on each individual asset – as information acquisition is
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ultimately self-defeating, lower information costs imply more rent which can be extracted

in the primary market.

4.3 Splitting and Pooling

Information acquisition also has consequences for whether an owner should sell cash-flows

individually, or in a pool. To this end, consider that the owner has at date 0 an asset

that pays x in l states and zero otherwise. The owner has the option to sell this asset in

its entirety. Alternatively, he can split the asset into x smaller assets (each paying 1 in l

states) and sell them to x separate investors. Assume that per-state information costs are

kI regardless of the size of the asset. In addition, assume that investors cannot credibly

reveal information to each other (otherwise, one investor could obtain the information and

sell them to all other investors) and that the market cannot observe how many investors

are selling assets (this would reveal the private information of investors).

Consider first the sale of the asset in one piece. This case is identical to that of a

correlated pool in the previous section. While for a correlated pool information acquisition

for one asset applied to x assets of size one, it now applies to one asset of size x. Information

acquisition is hence a∗C as given by Proposition 4. Consider next the sale of split assets to

different investors. Each investor is in the same situation as in the baseline model: he can

decide to acquire information about an asset of size 1. Thus, the results from the baseline

model apply. However, since there are now x investors in total, overall information costs

are x · a∗, identical to the case of an uncorrelated pool.

The decision whether or not to split the asset thus creates the same trade-off as the

decision whether to sell a correlated pool. We can conclude:

Proposition 6 Consider the owner’s choice to split an asset for sale.

1. If o ≤ ô, the owner prefers not to split.

2. If o ∈ (ô, ōC), the owner prefers to split.

3. If o ≥ ōC, the owner is indifferent.
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The intuition behind the trade-off is as follows. On the one hand, the incentives to

acquire information for an investor who has bought the entire asset are high because private

information can then be applied to an asset that pays off x > 1. On the other hand, when

investors who have bought the split assets acquire information, information acquisition is

duplicated because each individual investor will acquire information. This means that in

cases where there are large incentives to acquire information, the owner should sell the

entire asset in order to avoid duplication of a large amount of information.

5 Disclosure Policy

Regulation of information disclosure by firms has a long tradition and takes many forms.

Examples are requirements for listed companies to publish certified accounts at specified

intervals or to disclose material information in a timely fashion. Prior to the crisis of 2007-

2009, disclosure policies were predominantly targeted at protecting investors in standard

securities (debt and equity). Following the breakdown of trade in various classes of asset-

backed securities, a new focus of regulation is on the transparency of assets issued by

financial institutions. For example, the Dodd-Frank act requires disclosure of information

about asset-backed securities.

Disclosure policies typically take the form of minimum standards. Issuers are obliged

to follows these standards, but are free to implement higher standards of transparency.

The non-monotonic nature of opacity suggests that a (uniform) minimum standard is not

a desirable approach to regulation. We have shown that transparency reduces adverse

selection only when transparency is sufficiently large, while increasing it otherwise. Consider

Figures 3 and 7, which depict the (smoothed) cross-sectional relationship between opacity

and bid-ask spreads at the firm level. The turning point at which transparency reduces

asset liquidity is around the 40th percentile in both figures, suggesting that a mandated

increase in transparency may increase bid-ask spreads for a large share of the population of

firms. Since higher transparency brings about costs for issuers, the net effect of uniformly
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higher transparency may hence easily be negative.24 Note that this does not imply that

disclosure regulation per se is undesirable as actual opacity levels already reflect existing

efforts to enhance transparency.

Nonetheless, our analysis provides a clear rationale for regulation: issuers do not in-

ternalize the full cost of opacity for other agents in the economy and may hence choose

inefficiently low disclosure. Firm-specific disclosure standards that take into account that

optimal opacity is heterogenous are in principle welfare-enhancing. However, as the anal-

ysis in Section 4.1 has shown, the extent to which transparency is optimal depends on

deep parameters such as the cost of information to firms and investors. Regulation that

conditions on these parameters seems practically infeasible.

A less demanding approach is to provide subsidies (implicit or explicit) to issuers for

reducing transparency. From previous analysis we know that issuers sometimes choose

inefficient opacity since they only take into account a fraction δ < 1 of the full cost of

opacity, kI ·a
∗(1). A subsidy of (1−δ)kI ·a

∗(1) for each issuer can hence implement efficiency

(essentially, a negative Pigouvian tax). And when the regulator has incomplete knowledge

about the size of externalities posed by individual issuers, he can still implement a welfare-

improving policy through a subsidy that is equal to the minimum of (1− δ)kI · a
∗(1) across

all firms (in this case, transparency will be optimally increased at some firms – without

leading to any increases in transparency that are welfare-reducing at other firms).

A subsidy could, for example, take the form of a government-sponsored rating agency

that allows issuers (at their discretion) to obtain free ratings. In addition, publicly-run

information repositories could help reduce the costs of providing transparency to issuers.

It is crucial, however, that participation is left to the discretion of the issuers – compulsory

participation suffers from the same problem as mandatory disclosure requirements.

24Kurlat and Veldkamp (2015) provide an alternative reason for why disclosure can reduce welfare. The
channel is based on a general equilibrium effect. Disclosure makes assets less risky. This, in turn, will result
in assets commanding a lower return in equilibrium.
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6 Conclusion

How does opacity affect liquidity when investors can acquire information about an as-

set? This paper has suggested that the link between the two is non-monotonic. Both

very transparent and very opaque assets preserve commonality of information. While full

transparency directly precludes information asymmetries, sufficiently large opacity deters

acquisition of private information by making learning about an asset more costly. Assets

with either very low or very high opacity can hence be expected to be liquid. Assets which

display intermediate degrees of opacity, in contrast, are prone to information acquisition.

These assets may suffer from adverse selection problems when they need to be traded. An

empirical analysis of the cross-section of listed U.S. firms strongly supported this hump-

shape relationship between opacity and illiquidity.

Our analysis points to a significant benefit to opacity, which may help understand the

phenomenon that issuers often choose to sell surprisingly opaque assets, as for instance

observed in the case of securitization products. Policy makers thus have to be careful

in equating opacity with inefficiencies. The results also have implications for disclosure

regulation. In particular, our analysis suggests that uniform disclosure requirements are not

desirable. This is simply because they may increase adverse selection for the more opaque

assets in the economy. Rather, a more appropriate policy is to subsidize the provision of

information by issuers. This can help internalizing the externalities associated with opacity,

while allowing issuers to optimally preserve heterogeneous transparency levels.
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Appendix

A Random Discovery of the Payoff Interval

This analyzes a stochastic information acquisition technology. While in the baseline model

information acquisition started at the upper end of the interval [l, o], we now consider a

random starting point. Specifically, we denote the starting state for information acquisition

with y and assume that it is uniformly distributed on [l, o]. The distribution of the starting

state is known by the investor, but not its realization.

As before, the investor learns about an interval of mass a when choosing a level of

information acquisition a. For given starting state y, the investor thus learns about the

interval [y−a, y]). If a is such that y−a > l, she learns that the interval [y−a, y] does not

contain payoff states, as in the baseline model. If a is sufficiently large such that y− a ≤ l,

she “discovers” the payoff interval. In this case, she ends up with complete knowledge about

the distribution of payoff states.

We allow information acquisition to take place sequentially, that is, the investor can

first decide to obtain information about a certain mass of states, and following this decide

whether to analyze more states (and so on). Note that since the investor does not know

the realization of y, she does not know in advance whether a certain amount of information

acquisition will lead to discovery of the payoff interval.

It is easy to see that the modification in the information technology does not alter the

investor’s incentives to sell to the market at date 1 ( Lemma 1): she will offer the asset if

impatient; otherwise she will offer the asset only if she knows that the asset is worthless. The

price of the asset will again depend on the market’s belief about information acquisition.

These beliefs, however, are no longer necessarily characterized by a single parameter since

information acquisition can become stochastic (for instance, depending on y, investor may

discover the payoff interval early on and stop). Let us denote the market price with p̃ to

indicate its dependence on beliefs.

We start with the analysis of the investor’s incentives to acquire information. When

41



deciding about information, the investor takes as given the price p̃ at which she can sell to

the market. We consider information acquisition that takes place by acquiring knowledge

about (small) intervals of size b > 0 (we later consider the limit of b tending to zero).

Consider first that the investor has already discovered the payoff interval. She then has

complete information about the asset, and hence will not acquire any further information.

Consider next the decision of an investor to acquire information about an interval b given

that she has already acquired an amount a ≥ 0 of information and has not yet discovered

the payoff interval. Two cases arise. First, if a is sufficiently large such that o− a− b ≤ l,

the investor knows that the payoff interval will be discovered with certainty with the next

information acquisition. The discovery will benefit the investor when a state of nature s

materializes that falls in the interval [l, o− a] and when she is impatient. The probability

of this is (o− a− l)π, in which case she is able to sell at price p̃ rather than holding onto

a worthless asset. Her expected gains from additional information acquisition are thus

u(l, p̃)− u(a, p̃) = (o− a− l)πp̃− bkI . (12)

These gains are identical to Equation (3) in the baseline model - except that an interval of

size o−a− l is discovered by incurring costs for b (≥ o−a− l) states. Equation (12) shows

that information acquisition is beneficial whenever (o−a− l)πp̃ > bkI . We can hence define

the option value of information acquisition in this case as max{(o− a− l)πp̃− bkI , 0}.

Second, we have the case of o − a − b > l. In this case the investor does not know

whether the next information acquisition will discover the payoff interval – it depends on

the starting state y. While the realization of y is unknown to the investor, she infers from

not having discovered the payoff interval up to now that y ∈ [l + a, o]. The impact of

information acquisition in this case is as follows. When y > l+ a+ b, she does not discover

the payoff interval. In this case, she can rule out an interval of mass b as containing payoff-

states. When y ≤ l + a + b, she discovers the payoff interval. She then rules out in total

a mass of o − a − l states. The likelihood of non-discovery and discovery is 1 − b
o−a−l

and

b
o−a−l

, respectively. We hence have for the total expected mass of loss states discovered
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b(1 + o−l−a−b
o−a−l

). Recalling that the investor benefits from knowledge about loss states when

impatient, we obtain for the total expected gains from acquiring information

u(a+ b, p̃)− u(a, p̃) = b

(
(1 +

o− l − a− b

o− a− l
)πp̃− kI

)
+

(
1−

b

o− a− l

)
V (a+ b), (13)

where V (a + b) is the option value from acquiring further information when the payoff

interval has not been discovered.
The value of information acquisition can hence be recursively defined as

V (a) =





max{b
(
(1 + o−l−a−b

o−a−l
)πp̃− kI

)
+

(
1− b

o−a−l

)
V (a+ b), 0} if a < o− l − b

max{(o− a− l)πp̃− bkI , 0} if a ∈ [o− l − b, o− l)

0 if a ≥ o− l

. (14)

Note that f(a) := b
(
(1 + o−l−a−b

o−a−l
)πp̃− kI

)
is decreasing in a. This implies that the

value of acquiring information about an interval of size b is declining in the amount of

information already acquired. The reason is as follows. While the likelihood of discovering

the payoff interval ( b
o−a−l

) is increasing in a, the expected gains conditional on discovery

are decreasing. The latter is because the mass of states ruled out by discovery, o− l−a− b,

falls in a. Because of this latter effect, the gains from information acquisition are ultimately

decreasing.

It follows that f(a) ≤ 0 implies f(a + b) < 0. In addition, we can conclude that when

a ∈ [o − l − b, o − l) (that is, when the next information acquisition discovers the payoff

interval with certainty) we have f(a − b) > (o − a − l)πp̃ − bkI . From this it follows that

whenever f(a) ≤ 0, the option value of information acquisition beyond the next interval

is zero (V (a + b) = 0). Thus, V (a) = 0 whenever f(a) ≤ 0. The consequence is that an

investor will acquire information as long as f(a) > 0, and will stop when f(a) ≤ 0 or when

the payoff interval is discovered.

An equilibrium strategy for information acquisition is hence defined by a threshold

a∗ ∈ (0, o − l) such that f(a∗) ≤ 0, but f(a∗ + b) > 0. For arbitrarily small intervals of

information acquisition (b → 0), we find that f(a) = 0 precisely when
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p̃ =
kI

2π
. (15)

This condition is almost identical to the condition for an interior equilibrium in the baseline

model (p̃ = kI
π
). The difference arises because information acquisition is now more effective

as it can result in the discovery of the payoff interval, in which case the entire distribution

becomes known (in the baseline model, it only allowed us to proportionally narrow down

the set of payoff states). In order for the gains from information acquisition to be identical

to the costs kI , the price at which the asset can be sold when information is of use to the

investor hence has to be lower.

We next derive the break-even market price p̃ as a function of beliefs about information

acquisition. Recall that the investor’s strategy can be summarized by a threshold value a∗.

The market’s beliefs can hence be summarized by a single parameter ã. Note that even

though information discovery is stochastic, it only has two possible outcomes: either the

investor finds the payoff interval or she reaches ã and stops. Given that the starting point

y is distributed on [l, o], the probability of the payoff interval being discovered is simply

π0 =
ã

o− l
. (16)

The investor will offer the asset if either she is impatient or if she is patient and pri-

vately knows the asset will not pay out. The probability of the latter is o−l
o

when she has

discovered the payoff interval and ã
o
when she has not discovered the payoff interval. The

total probability of offering is thus

1− π + π

(
π0

o− l

o
+ (1− π0)

ã

o

)
. (17)

An offered asset only has a positive expected value if the investor is impatient (occurring

with probability 1−π), in which case the expected value to the market is l
o
. We can then use

(16) and (17) to express the expected value (and hence the price) of the asset conditional

on being offered as
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p(ã, o) =
1− π

(1− π)o+ π(ã(2− ã
o−l

))
l. (18)

Combining (15) and (18) to eliminate p(ã, o), and solving for a∗ = ã yields:

a∗ = (o− l)−

√
(o− l)

(
(o− l)− (1− π)(

2l

kI
−

o

π
)

)
. (19)

Differentiating with respect to o gives

∂a∗

∂o
= 1−

(o− l)
(
2− 1−π

π

)
− (1− π)( 2l

kI
− o

π
)

2

√
(o− l)

(
(o− l)− (1− π)( 2l

kI
− o

π
)
) < 0. (20)

Information acquisition (in an interior equilibrium) is hence declining in opacity o, as in

the baseline model.

The cases of no and full information acquisition are straightforward to analyze. No

information acquisition results if at a = 0 we have f(a) ≤ 0. Noting that zero information

acquisition implies p = l
o
, we can obtain from f(a) = 0 a critical threshold opacity of

ō = 2 lπ
kI
, such that an opacity level of o ≥ ō deters information acquisition. Full information

acquisition arises when f(o− l) ≥ 0 (as b → 0, we can ignore the case of a ∈ [o− l, o− l+b]).

Equation (18) yields for a∗ = o − l that p = (1−π)l
o−πl

. Combining with f(o − l) = 0 and

rearranging gives a critical threshold
¯
o = πl + (1−π)πl

2kI
. For o ≤

¯
o we hence have a full

information acquisition equilibrium.

We can summarize

Proposition A.1 The equilibrium threshold for information acquisition a∗(o) is given by

a∗(o) =





o− l if o ≤ ō

(o− l)−

√
(o− l)

(
(o− l)− (1− π)( 2l

kI
− o

π
)
)

if o ∈ (
¯
o, ō)

0 if o ≥
¯
o

(21)

with
¯
o = πl + (1−π)πl

2kI
and ō = 2 πl

kI
.
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B Learning about Loss States

Assume that the asset pays 1 if nature selects a state s ∈ [l, 1] and zero otherwise. Increasing

transparency and information acquisition each narrow down the potential set of states

where the asset does not pay off. In particular, for transparency choice o and information

acquisition a, the public knows the set of non-paying (loss) states to be on the interval

[0, o], while the investor knows that the loss states are distributed on [0, o− a].

For given beliefs about private information acquisition, ã, the trading decision of the

investor is as follows. When s ≥ o, both investor and market know that the asset will

certainly pay . Its price will hence be 1. An impatient investor will sell the asset, while a

patient investor will not sell given the assumptions we made about the investor’s actions

whenever indifferent. When s ∈ [o − a, o], the investor knows that the asset will certainly

pay off but the market only has imperfect knowledge about the payoff. The investor has

thus positive private information about the asset. If she is patient, she will hence not sell. If

impatient, the investor will still sell. Finally, when s ∈ [0, o− a], both investor and market

are uncertain about the payoff. However, the investor observes that s is not in her private

set of payoff states [o−a, o]. She thus has negative private information. She will hence sell,

regardless of whether she is patient or not (the expected value of the asset is o−a−l
o−a

in this

case). The market price of the asset (conditional on s < o) can hence be derived as

p(ã, o) =
o− l − ãπ

o− ãπ
. (22)

Note that for ã = 0, this simplifies to p = o−l
o
, which is the expected value of the asset

conditional on s < o. Note also that ∂p(ã,o)
∂ã

< 0, because of adverse selection.

Similar to equation (2) we can derive the investor’s utility given market beliefs ã:

u(a, ã) = 1− o+ o

(
a

o
(π + (1− π)p(ã, o) +

o− a

o
p(ã, o)

)
− kI · a. (23)
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The derivative with respect to a is

∂u(a, ã)

∂a
= π(1− p(ã, o))− kI . (24)

It is useful to contrast this with the marginal benefit of information acquisition in the

baseline model (∂u(a,ã)
∂a

= πp(ã, o)− kI). Private information benefits the investor whenever

it causes her to modify her selling decision. In the baseline model, the investor learns that

the asset will not pay off in certain states. A patient investor will then sell the asset if

such a state materializes; and hence benefits from a higher market price. In the extension

considered here, the investor learns about states in which the asset does pay off. She thus

does not sell the asset if such a state materializes. Her gains hence decline in the market

price (which she would otherwise obtain by selling the asset). This has a consequence:

because more information acquisition leads to lower prices in equilibrium, the gains from

information will now be increasing in the amount of information acquired (formally, we

have that ∂u(a,ã)
∂a

∣∣∣
a=ã

is increasing in a).

Two cases arise. Consider first that ∂u(a,ã)
∂a

∣∣∣
a=ã

> 0 at a = 0. This implies that at a

conjectured equilibrium with no information acquisition, the marginal gains from informa-

tion acquisition are positive. Since we know that ∂u(a,ã)
∂a

∣∣∣
a=ã

is increasing in a, the marginal

gains from information acquisition are hence also positive for any a > 0. The unique equi-

librium is hence full information acquisition: a∗ = o− l. Consider next that ∂u(a,ã)
∂a

∣∣∣
a=ã

< 0

at a = 0. In this case, the gains from information acquisition at an equilibrium with no

information acquisition are negative. Hence, no information acquisition is an equilibrium

(a∗ = 0). Since ∂u(a,ã)
∂a

∣∣∣
a=ã

is increasing in a, there might also be a second equilibrium with

positive information acquisition. However, this equilibrium would be pareto-dominated by

no information acquisition (which involves no information cost) and we hence rule it out.

Whether full or no opacity is chosen thus depends on the sign of ∂u(a,ã)
∂a

∣∣∣
a=ã

. Using

equation (24) one can find that this derivative is zero when o = πl
kI
. We can hence state

Proposition B.1 When the investor learns about loss states, the equilibrium level of in-
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formation acquisition a∗ is

a∗(o) =





o− l if o < ō

0 if o ≥ ō
(25)

with ō = πl
kI
.

C Increasing Cost of Information Acquisition

To analyze increasing costs of information acquisition, let the total cost of acquiring infor-

mation about a mass of a states be KI(a) with KI(0) = 0, K ′
I(a) > 0, K ′′

I (a) > 0.

Differentiating the investor’s utility u(a, ã) (equation (2), after replacing kI · a with the

new information cost function) with respect to a yields

∂u(a, ã)

∂a
= πp(ã, o)−K ′

I(a). (26)

Equation (26) determines a new threshold for zero information acquisition ō. Rearranging

πp(0, o) − K ′
I(0) = π l

o
− K ′

I(0) = 0 gives ō = πl
K′

I
(0)

. Since K ′
I(0) > 0, there is hence a

unique ō above which no information is acquired. Likewise,
¯
o is uniquely pinned down by

the condition: πp(o−l, o)−K ′
I(o−l) = π 1−π

1−π l

o

l
o
−K ′

I(o−l) = 0. This yields
¯
o = πl+ (1−π)πl

K′

I
(o−l)

.

Finally, we can write down the condition for the interior equilibrium: πp(a∗, o)−K ′
I(a

∗) =

π(1−π)l
o−π(o−a∗)

−K ′
I(a

∗) = 0. Totally differentiating with respect to o and rearranging gives

a∗′(o) = −
(1− π)K ′

I(a
∗(o))

πK ′
I(a

∗(o)) + ((1− π)o+ πa∗(o)))K
′′

I (a
∗(o))

< 0. (27)

Thus, opacity reduces information acquisition in an interior equilibrium. We hence have

the same properties as in the baseline model. For o ≤
¯
o we have full information acquisition

(a∗ = o − l). Between
¯
o and ō there is an interior degree of information acquisition which

is declining in opacity. For opacity larger than ō, no information is acquired.
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Decreasing Marginal Costs In a similar fashion, the case where marginal costs are

decreasing could be analyzed. In that case, interior amounts of information acquisition

will never materialize in equilibrium: Either all information is acquired or none, similar

to the case where learning is about loss states (see Appendix B). The outcome in terms

of information acquisition is then also similar: Sufficiently high opacity deters information

acquisition as it still limits the value of a given unit of information, while there is a threshold

opacity level such that information is fully acquired if opacity falls below the threshold.

D Adverse Selection Costs

Modify the baseline model by assuming that the utility of the impatient investor is

U I = CI
0 + qCI

1 , with q ≥ 1. (28)

This modification does not affect trading with the market: an impatient investor will always

sell while the patient investor only sells when she know the asset is worthless. Consider

next the investor’s incentives to acquire information. Similar to equation (2), utility is now

u(a, ã) = o

(
((1− π)q + π

a

o
)p(ã, o) + π

o− a

o

l

o− a

)
− kI · a. (29)

The derivative with respect to a is πp(ã, o)−kI – the same as in the baseline model (equation

(3)). The incentives to acquire information are hence unchanged and Proposition 1 still

applies. The reason is that information acquisition only benefits the investor if she turns

out to be patient, thus the fact that q may be larger than one does not matter.

The expression for welfare is now as follows. Whenever the investor is impatient and

sells to the market, there is an additional welfare gain of (q− 1)p(a∗(o), o) compared to the

baseline model. We thus have for welfare that

W (o, a∗(o)) = wI + wM + l + π(q − 1)p(a∗(o), o)− kO · (1− o)− kI · a
∗(o). (30)
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Opacity now has a new effect, arising because it can affect the price p through a change

in information acquisition. Since p is declining in information acquisition (equation (1)),

opacity-induced increases in information acquisition now have two effects. First, they di-

rectly lead to costs kI . Second, they reduce the gains for the impatient investor by lowering

the price at which she can sell to the market (when q > 1, these losses are not completely

offset by gains for the market).

Optimal opacity is determined analogous to the baseline model. For 1 ≤ ō, full opacity

maximizes welfare. For 1 > ō, one needs to compare welfare under full and no opacity

(because of the dependence on p, welfare is now non-linear in the region [l, ō], but this does

not affect the optimal decision). Full opacity is optimal if and only if W (1, a∗(1)) > W (l, 0),

which is when π(q− 1)p(a∗(1), 1)− kI · a
∗(1) > π(q− 1)p(0, o)− kO · (1− l). Otherwise full

transparency should be chosen.
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Table 2: Control factors in the determination of bid-ask spreads

This table summarizes results from an ordinary least squares regression where the

bid-ask spread is the dependent variable. We report coefficients for the independent

variables logged market capitalization, share price, average trading volume scaled

by market capitalization, the standard deviation of past daily returns, the standard

deviation of scaled past trading volume, and the number of analysts giving estimates.

Coefficient Spread

Market capitalization -0.00961***
(0.000605)

Share price 0.000417***
(0.000026)

Volume -0.00960
(0.00645)

St.Dev. volume -0.00161
(0.00122)

Volatility 0.11520***
(0.04058)

Number of analysts -0.000263***
(0.00008)

Constant 0.15023***
(0.00874)

Observations 2,067
R-squared 0.344

Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1
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Figure 7: Lowess Regression for Bid-Ask Spread

Figure 8: Lowess Regression of Bid-Ask Spread Residual
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